Author
Listed:
- Naveen Suresh
- Neelesh Chinnakonda Ashok Kumar
- Srikumar Subramanian
- Gowri Srinivasa
Abstract
A recurrent neural network (RNN) is a machine learning model that learns the relationship between elements of an input series, in addition to inferring a relationship between the data input to the model and target output. Memory augmentation allows the RNN to learn the interrelationships between elements of the input over a protracted length of the input series. Inspired by the success of stack augmented RNN (StackRNN) to generate strings for various applications, we present two memory augmented RNN-based architectures: the Neural Turing Machine (NTM) and the Differentiable Neural Computer (DNC) for the de-novo generation of small molecules. We trained a character-level convolutional neural network (CNN) to predict the properties of a generated string and compute a reward or loss in a deep reinforcement learning setup to bias the Generator to produce molecules with the desired property. Further, we compare the performance of these architectures to gain insight to their relative merits in terms of the validity and novelty of the generated molecules and the degree of property bias towards the computational generation of de-novo drugs. We also compare the performance of these architectures with simpler recurrent neural networks (Vanilla RNN, LSTM, and GRU) without an external memory component to explore the impact of augmented memory in the task of de-novo generation of small molecules.
Suggested Citation
Naveen Suresh & Neelesh Chinnakonda Ashok Kumar & Srikumar Subramanian & Gowri Srinivasa, 2022.
"Memory augmented recurrent neural networks for de-novo drug design,"
PLOS ONE, Public Library of Science, vol. 17(6), pages 1-21, June.
Handle:
RePEc:plo:pone00:0269461
DOI: 10.1371/journal.pone.0269461
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0269461. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.