IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0269259.html
   My bibliography  Save this article

Multicow pose estimation based on keypoint extraction

Author

Listed:
  • Caili Gong
  • Yong Zhang
  • Yongfeng Wei
  • Xinyu Du
  • Lide Su
  • Zhi Weng

Abstract

Automatic estimation of the poses of dairy cows over a long period can provide relevant information regarding their status and well-being in precision farming. Due to appearance similarity, cow pose estimation is challenging. To monitor the health of dairy cows in actual farm environments, a multicow pose estimation algorithm was proposed in this study. First, a monitoring system was established at a dairy cow breeding site, and 175 surveillance videos of 10 different cows were used as raw data to construct object detection and pose estimation data sets. To achieve the detection of multiple cows, the You Only Look Once (YOLO)v4 model based on CSPDarkNet53 was built and fine-tuned to output the bounding box for further pose estimation. On the test set of 400 images including single and multiple cows throughout the whole day, the average precision (AP) reached 94.58%. Second, the keypoint heatmaps and part affinity field (PAF) were extracted to match the keypoints of the same cow based on the real-time multiperson 2D pose detection model. To verify the performance of the algorithm, 200 single-object images and 200 dual-object images with occlusions were tested under different light conditions. The test results showed that the AP of leg keypoints was the highest, reaching 91.6%, regardless of day or night and single cows or double cows. This was followed by the AP values of the back, neck and head, sequentially. The AP of single cow pose estimation was 85% during the day and 78.1% at night, compared to double cows with occlusion, for which the values were 74.3% and 71.6%, respectively. The keypoint detection rate decreased when the occlusion was severe. However, in actual cow breeding sites, cows are seldom strongly occluded. Finally, a pose classification network was built to estimate the three typical poses (standing, walking and lying) of cows based on the extracted cow skeleton in the bounding box, achieving precision of 91.67%, 92.97% and 99.23%, respectively. The results showed that the algorithm proposed in this study exhibited a relatively high detection rate. Therefore, the proposed method can provide a theoretical reference for animal pose estimation in large-scale precision livestock farming.

Suggested Citation

  • Caili Gong & Yong Zhang & Yongfeng Wei & Xinyu Du & Lide Su & Zhi Weng, 2022. "Multicow pose estimation based on keypoint extraction," PLOS ONE, Public Library of Science, vol. 17(6), pages 1-18, June.
  • Handle: RePEc:plo:pone00:0269259
    DOI: 10.1371/journal.pone.0269259
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269259
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0269259&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0269259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0269259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.