IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0268650.html
   My bibliography  Save this article

Figure-ground responsive fields of monkey V4 neurons estimated from natural image patches

Author

Listed:
  • Kouji Kimura
  • Atsushi Kodama
  • Yukako Yamane
  • Ko Sakai

Abstract

Neurons in visual area V4 modulate their responses depending on the figure-ground (FG) organization in natural images containing a variety of shapes and textures. To clarify whether the responses depend on the extents of the figure and ground regions in and around the classical receptive fields (CRFs) of the neurons, we estimated the spatial extent of local figure and ground regions that evoked FG-dependent responses (RF-FGs) in natural images and their variants. Specifically, we applied the framework of spike triggered averaging (STA) to the combinations of neural responses and human-marked segmentation images (FG labels) that represent the extents of the figure and ground regions in the corresponding natural image stimuli. FG labels were weighted by the spike counts in response to the corresponding stimuli and averaged over. The bias due to the nonuniformity of FG labels was compensated by subtracting the ensemble average of FG labels from the weighted average. Approximately 50% of the neurons showed effective RF-FGs, and a large number exhibited structures that were similar to those observed in virtual neurons with ideal FG-dependent responses. The structures of the RF-FGs exhibited a subregion responsive to a preferred side (figure or ground) around the CRF center and a subregion responsive to a non-preferred side in the surroundings. The extents of the subregions responsive to figure were smaller than those responsive to ground in agreement with the Gestalt rule. We also estimated RF-FG by an adaptive filtering (AF) method, which does not require spherical symmetry (whiteness) in stimuli. RF-FGs estimated by AF and STA exhibited similar structures, supporting the veridicality of the proposed STA. To estimate the contribution of nonlinear processing in addition to linear processing, we estimated nonlinear RF-FGs based on the framework of spike triggered covariance (STC). The analyses of the models based on STA and STC did not show inconsiderable contribution of nonlinearity, suggesting spatial variance of FG regions. The results lead to an understanding of the neural responses that underlie the segregation of figures and the construction of surfaces in intermediate-level visual areas.

Suggested Citation

  • Kouji Kimura & Atsushi Kodama & Yukako Yamane & Ko Sakai, 2022. "Figure-ground responsive fields of monkey V4 neurons estimated from natural image patches," PLOS ONE, Public Library of Science, vol. 17(6), pages 1-27, June.
  • Handle: RePEc:plo:pone00:0268650
    DOI: 10.1371/journal.pone.0268650
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268650
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0268650&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0268650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0268650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.