Author
Listed:
- Gloria Ravegnini
- Martina Ferioli
- Maria Abbondanza Pantaleo
- Alessio G Morganti
- Antonio De Leo
- Pierandrea De Iaco
- Stefania Rizzo
- Anna Myriam Perrone
Abstract
Introduction: Uterine body cancers (UBC) are represented by endometrial carcinoma (EC) and uterine sarcoma (USa). The clinical management of both is hindered by the complex classification of patients into risk classes. This problem could be simplified through the development of predictive models aimed at treatment tailoring based on tumor and patient characteristics. In this context, radiomics represents a method of extracting quantitative data from images in order to non-invasively acquire tumor biological and genetic information and to predict response to treatments and prognosis. Furthermore, artificial intelligence (AI) methods are an emerging field of translational research, with the aim of managing the amount of data provided by the various -omics, including radiomics, through the process of machine learning, in order to promote precision medicine. Objective: The aim of this protocol for systematic review is to provide an overview of radiomics and AI studies on UBCs. Methods and analysis: A systematic review will be conducted using PubMed, Scopus, and the Cochrane Library to collect papers analyzing the impact of radiomics and AI on UBCs diagnosis, prognostic classification, and clinical outcomes. The PICO strategy will be used to formulate the research questions: What is the impact of radiomics and AI on UBCs on diagnosis, prognosis, and clinical results? How could radiomics or AI improve the differential diagnosis between sarcoma and fibroids? Does Radiomics or AI have a predictive role on UBCs response to treatments? Three authors will independently screen articles at title and abstract level based on the eligibility criteria. The risk of bias and quality of the cohort studies, case series, and case reports will be based on the QUADAS 2 quality assessment tools. Trial registration: PROSPERO registration number: CRD42021253535.
Suggested Citation
Gloria Ravegnini & Martina Ferioli & Maria Abbondanza Pantaleo & Alessio G Morganti & Antonio De Leo & Pierandrea De Iaco & Stefania Rizzo & Anna Myriam Perrone, 2022.
"Radiomics and artificial intelligence in malignant uterine body cancers: Protocol for a systematic review,"
PLOS ONE, Public Library of Science, vol. 17(6), pages 1-8, June.
Handle:
RePEc:plo:pone00:0267727
DOI: 10.1371/journal.pone.0267727
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267727. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.