Author
Listed:
- Cheng-Wei Wang
- Chao-Yang Kuo
- Chi-Huang Chen
- Yu-Hui Hsieh
- Emily Chia-Yu Su
Abstract
Introduction: Assisted reproductive technology has been proposed for women with infertility. Moreover, in vitro fertilization (IVF) cycles are increasing. Factors contributing to successful pregnancy have been widely explored. In this study, we used machine learning algorithms to construct prediction models for clinical pregnancies in IVF. Materials and methods: A total of 24,730 patients entered IVF and intracytoplasmic sperm injection cycles with clinical pregnancy outcomes at Taipei Medical University Hospital. Data used included patient characteristics and treatment. We used machine learning methods to develop prediction models for clinical pregnancy and explored how each variable affects the outcome of interest using partial dependence plots. Results: Experimental results showed that the random forest algorithm outperforms logistic regression in terms of areas under the receiver operating characteristics curve. The ovarian stimulation protocol is the most important factor affecting pregnancy outcomes. Long and ultra-long protocols have shown positive effects on clinical pregnancy among all protocols. Furthermore, total frozen and transferred embryos are positive for a clinical pregnancy, but female age and duration of infertility have negative effects on clinical pregnancy. Conclusion: Our findings show the importance of variables and propensity of each variable by random forest algorithm for clinical pregnancy in the assisted reproductive technology cycle. This study provides a ranking of variables affecting clinical pregnancy and explores the effects of each treatment on successful pregnancy. Our study has the potential to help clinicians evaluate the success of IVF in patients.
Suggested Citation
Cheng-Wei Wang & Chao-Yang Kuo & Chi-Huang Chen & Yu-Hui Hsieh & Emily Chia-Yu Su, 2022.
"Predicting clinical pregnancy using clinical features and machine learning algorithms in in vitro fertilization,"
PLOS ONE, Public Library of Science, vol. 17(6), pages 1-17, June.
Handle:
RePEc:plo:pone00:0267554
DOI: 10.1371/journal.pone.0267554
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267554. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.