IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0267553.html
   My bibliography  Save this article

Experimental research on rapid removing characteristics of carbon monoxide generated during gas explosions

Author

Listed:
  • Yashengnan Sun
  • Xihua Zhou
  • Ang Li
  • Gang Bai
  • Tianyu Xin
  • Jue Wang
  • Mufeng Xiao

Abstract

A large amount of gas, such as CO, accumulates in a coal mine after an explosion, leading to CO poisoning. In this study, a self-developed platform was used to eliminate CO from coal mines and determine the mass of the rapidly eliminated CO and its concentration in the eliminated gases. Equations were derived to calculate the amount of CO eliminated and the removing rate. The results showed that a rapid removing reagent in the form of nonprecious metal catalysts is useful for removing CO. Removing agents with larger masses facilitated the activation, irrespective of the CO concentration. For removing reagent amounts of 10, 15, 20, 25, and 30 g, the amount of CO eliminated, the removing rate, and the time required to complete catalytic oxidation increased sequentially. The CO removing process could be divided into three stages (I, II, and III) based on the variations in the CO, CO2, and O2 concentrations during CO removing. The removing reagent first chemically adsorbs CO and O2, and then desorbs CO2. The final CO concentration tends to 0, the O2 concentration remains stable, and the CO2 concentration decreases. This shows that the ablation agent has an impact on the changes in the CO and CO2 concentrations.

Suggested Citation

  • Yashengnan Sun & Xihua Zhou & Ang Li & Gang Bai & Tianyu Xin & Jue Wang & Mufeng Xiao, 2022. "Experimental research on rapid removing characteristics of carbon monoxide generated during gas explosions," PLOS ONE, Public Library of Science, vol. 17(5), pages 1-18, May.
  • Handle: RePEc:plo:pone00:0267553
    DOI: 10.1371/journal.pone.0267553
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267553
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0267553&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0267553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yimin Zhang & Yan Wang & Ligang Zheng & Tao Yang & Jianliang Gao & Zhenhua Li, 2018. "Effect of Pristine Palygorskite Powders on Explosion Characteristics of Methane-Air Premixed Gas," Energies, MDPI, vol. 11(10), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Wang & Xiangqing Meng & Wentao Ji & Bei Pei & Chendi Lin & Hao Feng & Ligang Zheng, 2019. "The Inhibition Effect of Gas–Solid Two-Phase Inhibitors on Methane Explosion," Energies, MDPI, vol. 12(3), pages 1-10, January.
    2. Junfeng Wang & Yansong Zhang & Huifeng Su & Jinshe Chen & Bo Liu & Yuyuan Zhang, 2019. "Explosion Characteristics and Flame Propagation Behavior of Mixed Dust Cloud of Coal Dust and Oil Shale Dust," Energies, MDPI, vol. 12(20), pages 1-13, October.
    3. Xiaohong Gui & Haiteng Xue & Junwei Zhu & Xingrui Zhan & Fupeng Zhao, 2022. "Study on Inhibition Characteristics of Composite Structure with High-Temperature Heat Pipe and Metal Foam on Gas Explosion," Energies, MDPI, vol. 15(3), pages 1-26, February.
    4. Yan Wang & Hao Feng & Yimin Zhang & Chendi Lin & Ligang Zheng & Wentao Ji & Xuefeng Han, 2019. "Suppression Effects of Hydroxy Acid Modified Montmorillonite Powders on Methane Explosions," Energies, MDPI, vol. 12(21), pages 1-12, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.