Author
Listed:
- Hasan Alqaraghuli
- Abdul Rashid Husain
- Nik Rumzi Bin Nik Idris
- Waqas Anjum
- Muhammad Abbas Abbasi
Abstract
The dynamic performance of the Model Predictive Control (MPC) of an Induction Motor (IM) relies on the accuracy and computational efficiency of the Discretisation Technique (DT). If the discretisation process is inaccurate or slow approximation, the MPC will exhibit high torque ripple and lower load handling capabilities. Traditionally, Euler’s method is used to discretise the MPC, which merely relies on the predictor to yield a fast, but less accurate system approximation. In contrast, Heun’s method uses a combination of predictor and corrector at alternate sampling intervals to improve the discretisation accuracy; however, the controller response becomes slow due to increased computational intensity of the algorithm. In this study, a new Hybrid Discretisation Technique (HDT) for Model Predictive Field Oriented Control (MPFOC) for IM control systems is presented to achieve robust discretisation with improved accuracy. In the proposed approach, Euler’s method is used to discretise the system at the first nine samples, followed by the predictor-corrector at the tenth sampling interval, accomplishing the desired speed and accuracy of discretisation. This newly proposed HDT in MPFOC is verified with Processor-In-Loop (PIL) for a three-phase IM with bi-directional rotation under varying load conditions. The results indicate that the IM torque ripple is reduced by up to 20%, whereas, the load handling capability is increased by up to 10%. Moreover, the controller gives 20% and 23% improvement in rise time and settling time, respectively, under high loading conditions, as compared to traditional Euler and Heun methods.
Suggested Citation
Hasan Alqaraghuli & Abdul Rashid Husain & Nik Rumzi Bin Nik Idris & Waqas Anjum & Muhammad Abbas Abbasi, 2022.
"A new method for controlling an induction motor using a hybrid discretization model predictive field orientated control,"
PLOS ONE, Public Library of Science, vol. 17(6), pages 1-17, June.
Handle:
RePEc:plo:pone00:0267459
DOI: 10.1371/journal.pone.0267459
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267459. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.