Author
Listed:
- Yun Jiang
- Tongtong Cheng
- Jinkun Dong
- Jing Liang
- Yuan Zhang
- Xin Lin
- Huixia Yao
Abstract
We propose a stacked convolutional neural network incorporating a novel and efficient pyramid residual attention (PRA) module for the task of automatic segmentation of dermoscopic images. Precise segmentation is a significant and challenging step for computer-aided diagnosis technology in skin lesion diagnosis and treatment. The proposed PRA has the following characteristics: First, we concentrate on three widely used modules in the PRA. The purpose of the pyramid structure is to extract the feature information of the lesion area at different scales, the residual means is aimed to ensure the efficiency of model training, and the attention mechanism is used to screen effective features maps. Thanks to the PRA, our network can still obtain precise boundary information that distinguishes healthy skin from diseased areas for the blurred lesion areas. Secondly, the proposed PRA can increase the segmentation ability of a single module for lesion regions through efficient stacking. The third, we incorporate the idea of encoder-decoder into the architecture of the overall network. Compared with the traditional networks, we divide the segmentation procedure into three levels and construct the pyramid residual attention network (PRAN). The shallow layer mainly processes spatial information, the middle layer refines both spatial and semantic information, and the deep layer intensively learns semantic information. The basic module of PRAN is PRA, which is enough to ensure the efficiency of the three-layer architecture network. We extensively evaluate our method on ISIC2017 and ISIC2018 datasets. The experimental results demonstrate that PRAN can obtain better segmentation performance comparable to state-of-the-art deep learning models under the same experiment environment conditions.
Suggested Citation
Yun Jiang & Tongtong Cheng & Jinkun Dong & Jing Liang & Yuan Zhang & Xin Lin & Huixia Yao, 2022.
"Dermoscopic image segmentation based on Pyramid Residual Attention Module,"
PLOS ONE, Public Library of Science, vol. 17(9), pages 1-22, September.
Handle:
RePEc:plo:pone00:0267380
DOI: 10.1371/journal.pone.0267380
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267380. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.