Author
Listed:
- Achim Langenbucher
- Nóra Szentmáry
- Alan Cayless
- Jascha Wendelstein
- Peter Hoffmann
Abstract
Background: To investigate modern nonlinear iterative strategies for formula constant optimisation and show the application and results from a large dataset using a set of disclosed theoretical-optical lens power calculation concepts. Methods: Nonlinear iterative optimisation algorithms were implemented for optimising the root mean squared (SoSPE), the mean absolute (SoAPE), the mean (MPE), the standard deviation (SDPE), the median (MEDPE), as well as the 90% confidence interval (CLPE) of the prediction error (PE), defined as the difference between postoperative achieved and formula predicted spherical equivalent power of refraction. Optimisation was performed using the Levenberg-Marquardt algorithm (SoSPE and SoAPE) or the interior point method (MPE, SDPE, MEDPE, CLPE) for the SRKT, Hoffer Q, Holladay 1, Haigis, and Castrop formulae. The results were based on a dataset of measurements made on 888 eyes after implantation of an aspherical hydrophobic monofocal intraocular lens (Vivinex, Hoya). Results: For all formulae and all optimisation metrics, the iterative algorithms showed a fast and stable convergence after a couple of iterations. The results prove that with optimisation for SoSPE, SoAPE, MPE, SDPE, MEDPE, and CLPE the root mean squared PE, mean absolute PE, mean PE, standard deviation of PE, median PE, and confidence interval of PE could be minimised in all situations. The results in terms of cumulative distribution function are quite coherent with optimisation for SoSPE, SoAPE, MPE and MEDPE, whereas with optimisation for SDPE and CLPE the standard deviation and confidence interval of the PE distribution could only be minimised at the cost of a systematic offset in mean and median PE. Conclusion: Nonlinear iterative techniques are capable of minimising any statistical metrics (e.g. root mean squared or mean absolute error) of any target parameter (e.g. PE). These optimisation strategies are an important step towards optimising for the target parameters which are used for evaluating the performance of lens power calculation formulae.
Suggested Citation
Achim Langenbucher & Nóra Szentmáry & Alan Cayless & Jascha Wendelstein & Peter Hoffmann, 2022.
"Strategies for formula constant optimisation for intraocular lens power calculation,"
PLOS ONE, Public Library of Science, vol. 17(5), pages 1-15, May.
Handle:
RePEc:plo:pone00:0267352
DOI: 10.1371/journal.pone.0267352
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267352. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.