Author
Listed:
- Yann Rouxel
- Rory Crawford
- Juan Pablo Forti Buratti
- Ian R Cleasby
Abstract
Bycatch of birds in longline fisheries is a global conservation issue, with between 160,000–320,000 seabirds killed each year, primarily through being caught and drowned as they attempt to snatch baits off hooks as they are set. This conservation issue has received significant recognition in southern hemisphere longline fisheries over the past several decades, largely due to the impact on highly charismatic and highly threatened birds, notably Albatrosses. As a result, the use of effective mitigation measures has been subject to fisheries regulations to reduce seabird bycatch from longliners in a number of national jurisdictions and in several Regional Fisheries Management Organisations (RMFOs). While mitigation measures have been mandated in a number of north Pacific longline fisheries, this is largely not the case in north Atlantic longline fisheries. This includes vessels using floated-demersal longlines in the North-East Atlantic longline fishery targeting European Hake Merluccius merluccius, in which high levels of seabird bycatch are estimated. In this paper, we analysed the sinking speed of a floated-demersal longline used to target European Hake in the offshore waters of Scotland, to determine potential bycatch risks to seabirds. We deployed Time Depth Recorder devices at different points of the gear. We assessed how this gear performed in comparison to the best practice minimum sink rate of 0.3 m/s recommended by the Agreement on the Conservation of Albatrosses and Petrels (ACAP) to limit bird access to baited hooks. We found that the average sinking speed of the floated-demersal longline was substantially slower than the ACAP recommendation, between two and nine times slower in non-weighted parts of the gear down to 10m water depth. Our work also found that the sink rate is particularly slow in the top 2m of the water column, increasing with depth and stabilizing at depths over 10m, presumably a consequence of propeller wash behind the vessel. We calculated that the distance astern of the vessel for hooks to sink beyond susceptible seabirds’ reach largely exceeds optimum coverage of best practice design Bird Scaring Lines (100 m). Our results indicate that hooks from floated-demersal longlines are therefore readily open to seabird attacks, and as a result, present a clear bycatch risk. Research is needed to adapt existing mitigation measures to floated-longlines and to develop novel mitigation approaches to improve the sink rate of the gear without impacting target fish catch.
Suggested Citation
Yann Rouxel & Rory Crawford & Juan Pablo Forti Buratti & Ian R Cleasby, 2022.
"Slow sink rate in floated-demersal longline and implications for seabird bycatch risk,"
PLOS ONE, Public Library of Science, vol. 17(4), pages 1-18, April.
Handle:
RePEc:plo:pone00:0267169
DOI: 10.1371/journal.pone.0267169
Download full text from publisher
References listed on IDEAS
- repec:plo:pone00:0184465 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267169. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.