Author
Listed:
- Carl Salk
- Elena Moltchanova
- Linda See
- Tobias Sturn
- Ian McCallum
- Steffen Fritz
Abstract
Involving members of the public in image classification tasks that can be tricky to automate is increasingly recognized as a way to complete large amounts of these tasks and promote citizen involvement in science. While this labor is usually provided for free, it is still limited, making it important for researchers to use volunteer contributions as efficiently as possible. Using volunteer labor efficiently becomes complicated when individual tasks are assigned to multiple volunteers to increase confidence that the correct classification has been reached. In this paper, we develop a system to decide when enough information has been accumulated to confidently declare an image to be classified and remove it from circulation. We use a Bayesian approach to estimate the posterior distribution of the mean rating in a binary image classification task. Tasks are removed from circulation when user-defined certainty thresholds are reached. We demonstrate this process using a set of over 4.5 million unique classifications by 2783 volunteers of over 190,000 images assessed for the presence/absence of cropland. If the system outlined here had been implemented in the original data collection campaign, it would have eliminated the need for 59.4% of volunteer ratings. Had this effort been applied to new tasks, it would have allowed an estimated 2.46 times as many images to have been classified with the same amount of labor, demonstrating the power of this method to make more efficient use of limited volunteer contributions. To simplify implementation of this method by other investigators, we provide cutoff value combinations for one set of confidence levels.
Suggested Citation
Carl Salk & Elena Moltchanova & Linda See & Tobias Sturn & Ian McCallum & Steffen Fritz, 2022.
"How many people need to classify the same image? A method for optimizing volunteer contributions in binary geographical classifications,"
PLOS ONE, Public Library of Science, vol. 17(5), pages 1-15, May.
Handle:
RePEc:plo:pone00:0267114
DOI: 10.1371/journal.pone.0267114
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267114. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.