IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0267094.html
   My bibliography  Save this article

A double scrambling-DNA row and column closed loop image encryption algorithm based on chaotic system

Author

Listed:
  • Weiyu Ran
  • Erfu Wang
  • Zhiyong Tong

Abstract

In this paper, a dynamic update algorithm of double scrambling-DNA row and column closed loop based on chaotic system is proposed. The classical scrambling and diffusion structure are used in the whole process. In the scrambling stage, a new pixel reconstruction method is proposed by combining the Hilbert curve with Knuth-Durstenfeld shuffle algorithm to overcome the shortcoming of nearby storage of Hilbert curve. This method reconstructs the pixel matrix of one-dimensional vector according to the Hilbert curve coding method, and achieves good scrambling effect, while reducing its time complexity and space complexity. In the diffusion stage, combining the plaintext row, the ciphertext row and the key row, and taking advantage of the parallel computing power and high storage density of the DNA encoding, the existing block diffusion operation is improved, and the two-round diffusion of the DNA encoding is proposed. When the last line of ciphertext is generated, the first line of ciphertext is updated and the closed-loop dynamic update of the encryption system is realized. Finally, SHA-256 is used to give the secret key and calculate the initial value of the chaotic system. The simulation results show that the “double scrambling-DNA row and column closed loop dynamic” update algorithm proposed in this paper can effectively improve the efficiency of information transmission and have high security.

Suggested Citation

  • Weiyu Ran & Erfu Wang & Zhiyong Tong, 2022. "A double scrambling-DNA row and column closed loop image encryption algorithm based on chaotic system," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-30, July.
  • Handle: RePEc:plo:pone00:0267094
    DOI: 10.1371/journal.pone.0267094
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267094
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0267094&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0267094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dejian Fang & Shuliang Sun, 2020. "A new secure image encryption algorithm based on a 5D hyperchaotic map," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zizhao Xie & Jingru Sun & Yiping Tang & Xin Tang & Oluyomi Simpson & Yichuang Sun, 2023. "A K-SVD Based Compressive Sensing Method for Visual Chaotic Image Encryption," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    2. Wang, Yu & Chen, Liquan & Wang, Xingyuan & Wu, Ge & Yu, Kunliang & Lu, Tianyu, 2021. "The design of keyed hash function based on CNN-MD structure," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.