IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0266568.html
   My bibliography  Save this article

A novel smartphone-based activity recognition modeling method for tracked equipment in forest operations

Author

Listed:
  • Ryer M Becker
  • Robert F Keefe

Abstract

Activity recognition modelling using smartphone Inertial Measurement Units (IMUs) is an underutilized resource defining and assessing work efficiency for a wide range of natural resource management tasks. This study focused on the initial development and validation of a smartphone-based activity recognition system for excavator-based mastication equipment working in Ponderosa pine (Pinus ponderosa) plantations in North Idaho, USA. During mastication treatments, sensor data from smartphone gyroscopes, accelerometers, and sound pressure meters (decibel meters) were collected at three sampling frequencies (10, 20, and 50 hertz (Hz)). These data were then separated into 9 time domain features using 4 sliding window widths (1, 5, 7.5 and 10 seconds) and two levels of window overlap (50% and 90%). Random forest machine learning algorithms were trained and evaluated for 40 combinations of model parameters to determine the best combination of parameters. 5 work elements (masticate, clear, move, travel, and delay) were classified with the performance metrics for individual elements of the best model (50 Hz, 10 second window, 90% window overlap) falling within the following ranges: area under the curve (AUC) (95.0% - 99.9%); sensitivity (74.9% - 95.6%); specificity (90.8% - 99.9%); precision (81.1% - 98.3%); F1-score (81.9% - 96.9%); balanced accuracy (87.4% - 97.7%). Smartphone sensors effectively characterized individual work elements of mechanical fuel treatments. This study is the first example of developing a smartphone-based activity recognition model for ground-based forest equipment. The continued development and dissemination of smartphone-based activity recognition models may assist land managers and operators with ubiquitous, manufacturer-independent systems for continuous and automated time study and production analysis for mechanized forest operations.

Suggested Citation

  • Ryer M Becker & Robert F Keefe, 2022. "A novel smartphone-based activity recognition modeling method for tracked equipment in forest operations," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-27, April.
  • Handle: RePEc:plo:pone00:0266568
    DOI: 10.1371/journal.pone.0266568
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0266568
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0266568&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0266568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0266568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.