Author
Listed:
- Pradyumna Byappanahalli Suresha
- Heather O’Leary
- Daniel C Tarquinio
- Jana Von Hehn
- Gari D Clifford
Abstract
Rett syndrome, a rare genetic neurodevelopmental disorder in humans, does not have an effective cure. However, multiple therapies and medications exist to treat symptoms and improve patients’ quality of life. As research continues to discover and evaluate new medications for Rett syndrome patients, there remains a lack of objective physiological and motor activity-based (physio-motor) biomarkers that enable the measurement of the effect of these medications on the change in patients’ Rett syndrome severity. In our work, using a commercially available wearable chest patch, we recorded simultaneous electrocardiogram and three-axis acceleration from 20 patients suffering from Rett syndrome along with the corresponding Clinical Global Impression—Severity score, which measures the overall disease severity on a 7-point Likert scale. We derived physio-motor features from these recordings that captured heart rate variability, activity metrics, and the interactions between heart rate and activity. Further, we developed machine learning (ML) models to classify high-severity Rett patients from low-severity Rett patients using the derived physio-motor features. For the best-trained model, we obtained a pooled area under the receiver operating curve equal to 0.92 via a leave-one-out-patient cross-validation approach. Finally, we computed the feature popularity scores for all the trained ML models and identified physio-motor biomarkers for Rett syndrome.
Suggested Citation
Pradyumna Byappanahalli Suresha & Heather O’Leary & Daniel C Tarquinio & Jana Von Hehn & Gari D Clifford, 2023.
"Rett syndrome severity estimation with the BioStamp nPoint using interactions between heart rate variability and body movement,"
PLOS ONE, Public Library of Science, vol. 18(3), pages 1-17, March.
Handle:
RePEc:plo:pone00:0266351
DOI: 10.1371/journal.pone.0266351
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0266351. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.