Author
Listed:
- Faisal Siddiq
- Yaseer Arafat Durrani
Abstract
Low-power consumption has been always a crucial design constraint for an efficient intellectual property based three-dimensional multi-core system that cannot be ignored easily. As the complexity increases due to the number of cores/stacks/ layers in 3D digital systems, the challenges to handle power can be more difficult at a high abstraction level. Therefore, the low-power approach gives designers an opportunity to estimate and optimize the power consumption in the early stages of design phases. The accurate power estimation through the macro-modeling approach at high-level reduces the risk of redesign cycle and turn-around time. In this research, we have presented an improved statistical macro-modeling approach that estimates power through statistical characteristics of randomly generated input patterns by using Biogeography Based Optimization. These input patterns propagate signals into an IP-based 3D digital test system. In experiments, the test system is based on four 8 to 32- bits heterogeneous cores. The response of the power is monitored by applying the well-known Monte Carlo Simulation technique. The entire power estimation method is performed in two major steps. First, the average power is estimated for an IP-based individual core. Second, the average power for bus-based Through-Silicon-Via is estimated. Finally, the cores and B-TSVs are integrated together to construct a 3D system. Then the average power for complete test systems is estimated. The experimental results of the statistical power macro-model are compared with the commercial Electronic Design Automation power simulator at the operating frequency of 100 MHz. The average percentage error of the test system is calculated as 8.65%. For the validation of these results, the statistical error analysis is additionally performed and reveals that our proposed macro-model is accurate in terms of percentage of error with a feasible amount of time.
Suggested Citation
Faisal Siddiq & Yaseer Arafat Durrani, 2022.
"Efficient power macromodeling approach for heterogeneously stacked 3d ICs using Bio-geography based optimization,"
PLOS ONE, Public Library of Science, vol. 17(2), pages 1-25, February.
Handle:
RePEc:plo:pone00:0264181
DOI: 10.1371/journal.pone.0264181
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0264181. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.