Author
Listed:
- Hooman H Rashidi
- John Pepper
- Taylor Howard
- Karina Klein
- Larissa May
- Samer Albahra
- Brett Phinney
- Michelle R Salemi
- Nam K Tran
Abstract
The 2019 novel coronavirus infectious disease (COVID-19) pandemic has resulted in an unsustainable need for diagnostic tests. Currently, molecular tests are the accepted standard for the detection of SARS-CoV-2. Mass spectrometry (MS) enhanced by machine learning (ML) has recently been postulated to serve as a rapid, high-throughput, and low-cost alternative to molecular methods. Automated ML is a novel approach that could move mass spectrometry techniques beyond the confines of traditional laboratory settings. However, it remains unknown how different automated ML platforms perform for COVID-19 MS analysis. To this end, the goal of our study is to compare algorithms produced by two commercial automated ML platforms (Platforms A and B). Our study consisted of MS data derived from 361 subjects with molecular confirmation of COVID-19 status including SARS-CoV-2 variants. The top optimized ML model with respect to positive percent agreement (PPA) within Platforms A and B exhibited an accuracy of 94.9%, PPA of 100%, negative percent agreement (NPA) of 93%, and an accuracy of 91.8%, PPA of 100%, and NPA of 89%, respectively. These results illustrate the MS method’s robustness against SARS-CoV-2 variants and highlight similarities and differences in automated ML platforms in producing optimal predictive algorithms for a given dataset.
Suggested Citation
Hooman H Rashidi & John Pepper & Taylor Howard & Karina Klein & Larissa May & Samer Albahra & Brett Phinney & Michelle R Salemi & Nam K Tran, 2022.
"Comparative performance of two automated machine learning platforms for COVID-19 detection by MALDI-TOF-MS,"
PLOS ONE, Public Library of Science, vol. 17(7), pages 1-11, July.
Handle:
RePEc:plo:pone00:0263954
DOI: 10.1371/journal.pone.0263954
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0263954. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.