IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0262349.html
   My bibliography  Save this article

Deep learning model for fully automated breast cancer detection system from thermograms

Author

Listed:
  • Esraa A Mohamed
  • Essam A Rashed
  • Tarek Gaber
  • Omar Karam

Abstract

Breast cancer is one of the most common diseases among women worldwide. It is considered one of the leading causes of death among women. Therefore, early detection is necessary to save lives. Thermography imaging is an effective diagnostic technique which is used for breast cancer detection with the help of infrared technology. In this paper, we propose a fully automatic breast cancer detection system. First, U-Net network is used to automatically extract and isolate the breast area from the rest of the body which behaves as noise during the breast cancer detection model. Second, we propose a two-class deep learning model, which is trained from scratch for the classification of normal and abnormal breast tissues from thermal images. Also, it is used to extract more characteristics from the dataset that is helpful in training the network and improve the efficiency of the classification process. The proposed system is evaluated using real data (A benchmark, database (DMR-IR)) and achieved accuracy = 99.33%, sensitivity = 100% and specificity = 98.67%. The proposed system is expected to be a helpful tool for physicians in clinical use.

Suggested Citation

  • Esraa A Mohamed & Essam A Rashed & Tarek Gaber & Omar Karam, 2022. "Deep learning model for fully automated breast cancer detection system from thermograms," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
  • Handle: RePEc:plo:pone00:0262349
    DOI: 10.1371/journal.pone.0262349
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262349
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0262349&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0262349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rohit Kundu & Ritacheta Das & Zong Woo Geem & Gi-Tae Han & Ram Sarkar, 2021. "Pneumonia detection in chest X-ray images using an ensemble of deep learning models," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-29, September.
    2. Cuevas, Antonio & Febrero, Manuel & Fraiman, Ricardo, 2004. "An anova test for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 111-122, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    2. Álvarez-Liébana, J. & López-Pérez, A. & González-Manteiga, W. & Febrero-Bande, M., 2025. "A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    3. Yin, Xu & Wang, Jing & Li, Yurui & Feng, Zhiming & Wang, Qianyi, 2021. "Are small towns really inefficient? A data envelopment analysis of sampled towns in Jiangsu province, China," Land Use Policy, Elsevier, vol. 109(C).
    4. Joseph, Esdras & Galeano San Miguel, Pedro & Lillo Rodríguez, Rosa Elvira, 2015. "Two-sample Hotelling's T² statistics based on the functional Mahalanobis semi-distance," DES - Working Papers. Statistics and Econometrics. WS ws1503, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Flores Díaz, Ramón Jesús & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2014. "Homogeneity test for functional data based on depth measures," DES - Working Papers. Statistics and Econometrics. WS ws140101, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Balogoun, Armando Sosthène Kali & Nkiet, Guy Martial & Ogouyandjou, Carlos, 2021. "Asymptotic normality of a generalized maximum mean discrepancy estimator," Statistics & Probability Letters, Elsevier, vol. 169(C).
    7. Jin-Ting Zhang & Xuehua Liang, 2014. "One-Way anova for Functional Data via Globalizing the Pointwise F-test," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 51-71, March.
    8. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    9. repec:plo:pone00:0205981 is not listed on IDEAS
    10. Lajos Horváth & Gregory Rice, 2015. "Testing Equality Of Means When The Observations Are From Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 84-108, January.
    11. Zhang, Jin-Ting & Cheng, Ming-Yen & Wu, Hau-Tieng & Zhou, Bu, 2019. "A new test for functional one-way ANOVA with applications to ischemic heart screening," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 3-17.
    12. A. Debòn & S. Haberman & F. Montes & E. Otranto, 2012. "Model effect on projected mortality indicators," Working Paper CRENoS 201215, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    13. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    14. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    15. Hervé Cardot & Luboš Prchal & Pascal Sarda, 2007. "No effect and lack-of-fit permutation tests for functional regression," Computational Statistics, Springer, vol. 22(3), pages 371-390, September.
    16. Věroslav Holuša & Michal Vaněk & Filip Beneš & Jiří Švub & Pavel Staša, 2023. "Virtual Reality as a Tool for Sustainable Training and Education of Employees in Industrial Enterprises," Sustainability, MDPI, vol. 15(17), pages 1-24, August.
    17. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    18. T. Górecki & Ł. Smaga, 2017. "Multivariate analysis of variance for functional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2172-2189, September.
    19. Smida, Zaineb & Laurent, Thibault & Cucala, Lionel, 2024. "A Hotelling spatial scan statistic for functional data: application to economic and climate data," TSE Working Papers 24-1583, Toulouse School of Economics (TSE).
    20. Rafael Carvalho Ceregatti & Rafael Izbicki & Luis Ernesto Bueno Salasar, 2021. "WIKS: a general Bayesian nonparametric index for quantifying differences between two populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 274-291, March.
    21. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0262349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.