IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0261742.html
   My bibliography  Save this article

Know your enemy: Application of ATR-FTIR spectroscopy to invasive species control

Author

Listed:
  • Claire Anne Holden
  • John Paul Bailey
  • Jane Elizabeth Taylor
  • Frank Martin
  • Paul Beckett
  • Martin McAinsh

Abstract

Extreme weather and globalisation leave our climate vulnerable to invasion by alien species, which have negative impacts on the economy, biodiversity, and ecosystem services. Rapid and accurate identification is key to the control of invasive alien species. However, visually similar species hinder conservation efforts, for example hybrids within the Japanese Knotweed complex.We applied the novel method of ATR-FTIR spectroscopy combined with chemometrics (mathematics applied to chemical data) to historic herbarium samples, taking 1580 spectra in total. Samples included five species from within the interbreeding Japanese Knotweed complex (including three varieties of Japanese Knotweed), six hybrids and five species from the wider Polygonaceae family. Spectral data from herbarium specimens were analysed with several chemometric techniques: support vector machines (SVM) for differentiation between plant types, supported by ploidy levels; principal component analysis loadings and spectral biomarkers to explore differences between the highly invasive Reynoutria japonica var. japonica and its non-invasive counterpart Reynoutria japonica var. compacta; hierarchical cluster analysis (HCA) to investigate the relationship between plants within the Polygonaceae family, of the Fallopia, Reynoutria, Rumex and Fagopyrum genera.ATR-FTIR spectroscopy coupled with SVM successfully differentiated between plant type, leaf surface and geographical location, even in herbarium samples of varying age. Differences between Reynoutria japonica var. japonica and Reynoutria japonica var. compacta included the presence of two polysaccharides, glucomannan and xyloglucan, at higher concentrations in Reynoutria japonica var. japonica than Reynoutria japonica var. compacta. HCA analysis indicated that potential genetic linkages are sometimes masked by environmental factors; an effect that can either be reduced or encouraged by altering the input parameters. Entering the absorbance values for key wavenumbers, previously highlighted by principal component analysis loadings, favours linkages in the resultant HCA dendrogram corresponding to expected genetic relationships, whilst environmental associations are encouraged using the spectral fingerprint region.The ability to distinguish between closely related interbreeding species and hybrids, based on their spectral signature, raises the possibility of using this approach for determining the origin of Japanese knotweed infestations in legal cases where the clonal nature of plants currently makes this difficult and for the targeted control of species and hybrids. These techniques also provide a new method for supporting biogeographical studies.

Suggested Citation

  • Claire Anne Holden & John Paul Bailey & Jane Elizabeth Taylor & Frank Martin & Paul Beckett & Martin McAinsh, 2022. "Know your enemy: Application of ATR-FTIR spectroscopy to invasive species control," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-21, January.
  • Handle: RePEc:plo:pone00:0261742
    DOI: 10.1371/journal.pone.0261742
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261742
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0261742&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0261742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0261742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.