IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0261029.html
   My bibliography  Save this article

Optimal training of integer-valued neural networks with mixed integer programming

Author

Listed:
  • Tómas Thorbjarnarson
  • Neil Yorke-Smith

Abstract

Recent work has shown potential in using Mixed Integer Programming (MIP) solvers to optimize certain aspects of neural networks (NNs). However the intriguing approach of training NNs with MIP solvers is under-explored. State-of-the-art-methods to train NNs are typically gradient-based and require significant data, computation on GPUs, and extensive hyper-parameter tuning. In contrast, training with MIP solvers does not require GPUs or heavy hyper-parameter tuning, but currently cannot handle anything but small amounts of data. This article builds on recent advances that train binarized NNs using MIP solvers. We go beyond current work by formulating new MIP models which improve training efficiency and which can train the important class of integer-valued neural networks (INNs). We provide two novel methods to further the potential significance of using MIP to train NNs. The first method optimizes the number of neurons in the NN while training. This reduces the need for deciding on network architecture before training. The second method addresses the amount of training data which MIP can feasibly handle: we provide a batch training method that dramatically increases the amount of data that MIP solvers can use to train. We thus provide a promising step towards using much more data than before when training NNs using MIP models. Experimental results on two real-world data-limited datasets demonstrate that our approach strongly outperforms the previous state of the art in training NN with MIP, in terms of accuracy, training time and amount of data. Our methodology is proficient at training NNs when minimal training data is available, and at training with minimal memory requirements—which is potentially valuable for deploying to low-memory devices.

Suggested Citation

  • Tómas Thorbjarnarson & Neil Yorke-Smith, 2023. "Optimal training of integer-valued neural networks with mixed integer programming," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-17, February.
  • Handle: RePEc:plo:pone00:0261029
    DOI: 10.1371/journal.pone.0261029
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261029
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0261029&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0261029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0261029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.