Author
Listed:
- Ding Han
- Minghua Tian
- Caili Gong
- Shilong Zhang
- Yushuang Ji
- Xinyu Du
- Yongfeng Wei
- Liang Chen
Abstract
Automatically identifying the forage is the basis of intelligent fine breeding of cattle and sheep. In specific, it is a key step to study the relationship between the type and quantity of forage collected by cattle and sheep and their own growth, cashmere fineness, milk quality, meat quality and flavor, and so on. However, traditional method mainly rely on manual observation, which is time-consuming, laborious and inaccurate, and affects the normal grazing behavior of livestock. In this paper, the optimized Convolution Neural Network(CNN): edge autoencoder network(E-A-Net) algorithm is proposed to accurately identify the forage species, which provides the basis for ecological workers to carry out grassland evaluation, grassland management and precision feeding. We constructed the first forage grass dataset about Etuoke Banner. This dataset contains 3889 images in 22 categories. In the data preprocessing stage, the random cutout data enhancement is adopted to balance the original data, and the background is removed by employing threshold value-based image segmentation operation, in which the accuracy of herbage recognition in complex background is significantly improved. Moreover, in order to avoid the phenomenon of richer edge information disappearing in the process of multiple convolutions, a Sobel operator is utilized in this E-A-Net to extract the edge information of forage grasses. Information is integrated with the features extracted from the backbone network in multi-scale. Additionally, to avoid the localization of the whole information during the convolution process or alleviate the problem of the whole information disappearance, the pre-training autoencoder network is added to form a hard attention mechanism, which fuses the abstracted overall features of forage grasses with the features extracted from the backbone CNN. Compared with the basic CNN, E-A-Net alleviates the problem of edge information disappearing and overall feature disappearing with the deepening of network depth. Numerical simulations show that, compared with the benchmark VGG16, ResNet50 and EfficientNetB0, the f1 − score of the proposed method is improved by 1.6%, 2.8% and 3.7% respectively.
Suggested Citation
Ding Han & Minghua Tian & Caili Gong & Shilong Zhang & Yushuang Ji & Xinyu Du & Yongfeng Wei & Liang Chen, 2022.
"Image classification of forage grasses on Etuoke Banner using edge autoencoder network,"
PLOS ONE, Public Library of Science, vol. 17(6), pages 1-23, June.
Handle:
RePEc:plo:pone00:0259783
DOI: 10.1371/journal.pone.0259783
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259783. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.