Author
Listed:
- Ghulam Abbas
- Muhammad Tanveer
- Ziaul Haq Abbas
- Muhammad Waqas
- Thar Baker
- Dhiya Al-Jumeily OBE
Abstract
One of the significant challenges in the Internet of Things (IoT) is the provisioning of guaranteed security and privacy, considering the fact that IoT devices are resource-limited. Oftentimes, in IoT applications, remote users need to obtain real-time data, with guaranteed security and privacy, from resource-limited network nodes through the public Internet. For this purpose, the users need to establish a secure link with the network nodes. Though the IPv6 over low-power wireless personal area networks (6LoWPAN) adaptation layer standard offers IPv6 compatibility for resource-limited wireless networks, the fundamental 6LoWPAN structure ignores security and privacy characteristics. Thus, there is a pressing need to design a resource-efficient authenticated key exchange (AKE) scheme for ensuring secure communication in 6LoWPAN-based resource-limited networks. This paper proposes a resource-efficient secure remote user authentication scheme for 6LoWPAN-based IoT networks, called SRUA-IoT. SRUA-IoT achieves the authentication of remote users and enables the users and network entities to establish private session keys between themselves for indecipherable communication. To this end, SRUA-IoT uses a secure hash algorithm, exclusive-OR operation, and symmetric encryption primitive. We prove through informal security analysis that SRUA-IoT is secured against a variety of malicious attacks. We also prove the security strength of SRUA-IoT through formal security analysis conducted by employing the random oracle model. Additionally, we prove through Scyther-based validation that SRUA-IoT is resilient against various attacks. Likewise, we demonstrate that SRUA-IoT reduces the computational cost of the nodes and communication overheads of the network.
Suggested Citation
Ghulam Abbas & Muhammad Tanveer & Ziaul Haq Abbas & Muhammad Waqas & Thar Baker & Dhiya Al-Jumeily OBE, 2021.
"A secure remote user authentication scheme for 6LoWPAN-based Internet of Things,"
PLOS ONE, Public Library of Science, vol. 16(11), pages 1-18, November.
Handle:
RePEc:plo:pone00:0258279
DOI: 10.1371/journal.pone.0258279
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0258279. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.