IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0255793.html
   My bibliography  Save this article

Research on optimization of perforation parameters for formation fractures based on response surface optimization method

Author

Listed:
  • Wei Liu
  • Suling Wang
  • Kangxing Dong
  • Tiancai Cheng

Abstract

For staged multi-cluster fracturing, methods for controlling perforation friction to adjust the flow distribution of each cluster can effectively promote the uniform extension of multiple fractures but lacks a fast and quantitative optimization method for different perforation parameters of each cluster. By establishing a numerical model of single-stage three-cluster flow-limited fracturing under stress-seepage coupling, and based on the response surface optimization method, fully considering the impact of perforation parameters interaction among three perforation clusters, according to the regression equation fitted under the global response, the rapid optimization of perforation parameters of segmented multi-cluster fracturing model is realized. The results show that: in determining the three factors of the study, it is found that there is an obvious interaction between the number of intermediate cluster perforations and the number of cluster perforations on both sides, the number of cluster perforations on both sides and the diameter of intermediate cluster perforations, the response surface optimization method gives the optimal perforation parameter combination of three clusters of fractures under global response; When the perforation parameters were combined before optimization, the fracture length difference was 32.550m, and the intermediate perforation cluster evolved into invalid perforation cluster, when the perforation parameters were combined after optimization, the fracture length difference was 0.528m, the three perforation clusters spread uniformly, and there are no invalid clusters. At the same time, the regression equation under the response is optimized before and after the comparison between the predicted value of the equation and the actual simulation value. It is found that the estimated deviation rate of the equation before optimization is 1.2%, and the estimated deviation rate after optimization is 0.4%. The estimated deviation rates are all less, and the response regression equation based on the response surface optimization method can quickly optimize the perforation parameters. The response surface optimization method is suitable for the multi parameter optimization research of formation fracturing which is often affected by many geological and engineering factors. Combining with the engineering practice and integrating more factors to optimize the hydraulic fracturing parameters, it is of great significance to improve the success rate of hydraulic fracturing application.

Suggested Citation

  • Wei Liu & Suling Wang & Kangxing Dong & Tiancai Cheng, 2021. "Research on optimization of perforation parameters for formation fractures based on response surface optimization method," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-23, August.
  • Handle: RePEc:plo:pone00:0255793
    DOI: 10.1371/journal.pone.0255793
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255793
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0255793&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0255793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0255793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.