IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0255767.html
   My bibliography  Save this article

Importance of applying Mixed Generalized Additive Model (MGAM) as a method for assessing the environmental health impacts: Ambient temperature and Acute Myocardial Infarction (AMI), among elderly in Shanghai, China

Author

Listed:
  • Xiaoqian Huang
  • Weiping Ma
  • Chikin Law
  • Jianfeng Luo
  • Naiqing Zhao

Abstract

Association between acute myocardial infarction (AMI) morbidity and ambient temperature has been examined with generalized linear model (GLM) or generalized additive model (GAM). However, the effect size by these two methods might be biased due to the autocorrelation of time series data and arbitrary selection of degree of freedom of natural cubic splines. The present study analyzed how the climatic factors affected AMI morbidity for older adults in Shanghai with Mixed generalized additive model (MGAM) that addressed these shortcomings mentioned. Autoregressive random effect was used to model the relationship between AMI and temperature, PM10, week days and time. The degree of freedom of time was chosen based on the seasonal pattern of temperature. The performance of MGAM was compared with GAM on autocorrelation function (ACF), partial autocorrelation function (PACF) and goodness of fit. One-year predictions of AMI counts in 2011 were conducted using MGAM with the moving average. Between 2007 and 2011, MGAM adjusted the autocorrelation of AMI time series and captured the seasonal pattern after choosing the degree of freedom of time at 5. Using MGAM, results were well fitted with data in terms of both internal (R2 = 0.86) and external validity (correlation coefficient = 0.85). The risk of AMI was relatively high in low temperature (Risk ratio = 0.988 (95% CI 0.984, 0.993) for under 12°C) and decreased as temperature increased and speeded up within the temperature zone from 12°C to 26°C (Risk ratio = 0.975 (95% CI 0.971, 0.979), but it become increasing again when it is 26°C although not significantly (Risk ratio = 0.999 (95% CI 0.986, 1.012). MGAM is more appropriate than GAM in the scenario of response variable with autocorrelation and predictors with seasonal variation. The risk of AMI was comparatively higher when temperature was lower than 12°C in Shanghai as a typical representative location of subtropical climate.

Suggested Citation

  • Xiaoqian Huang & Weiping Ma & Chikin Law & Jianfeng Luo & Naiqing Zhao, 2021. "Importance of applying Mixed Generalized Additive Model (MGAM) as a method for assessing the environmental health impacts: Ambient temperature and Acute Myocardial Infarction (AMI), among elderly in S," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-13, August.
  • Handle: RePEc:plo:pone00:0255767
    DOI: 10.1371/journal.pone.0255767
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255767
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255767&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0255767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0255767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.