IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0249518.html
   My bibliography  Save this article

Perception and prediction of the putting distance of robot putting movements under different visual/viewing conditions

Author

Listed:
  • Gerrit Kollegger
  • Josef Wiemeyer
  • Marco Ewerton
  • Jan Peters

Abstract

The purpose of this paper is to examine, whether and under which conditions humans are able to predict the putting distance of a robotic device. Based on the “flash-lag effect” (FLE) it was expected that the prediction errors increase with increasing putting velocity. Furthermore, we hypothesized that the predictions are more accurate and more confident if human observers operate under full vision (F-RCHB) compared to either temporal occlusion (I-RCHB) or spatial occlusion (invisible ball, F-RHC, or club, F-B). In two experiments, 48 video sequences of putt movements performed by a BioRob robot arm were presented to thirty-nine students (age: 24.49±3.20 years). In the experiments, video sequences included six putting distances (1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 m; experiment 1) under full versus incomplete vision (F-RCHB versus I-RCHB) and three putting distances (2. 0, 3.0, and 4.0 m; experiment 2) under the four visual conditions (F-RCHB, I-RCHB, F-RCH, and F-B). After the presentation of each video sequence, the participants estimated the putting distance on a scale from 0 to 6 m and provided their confidence of prediction on a 5-point scale. Both experiments show comparable results for the respective dependent variables (error and confidence measures). The participants consistently overestimated the putting distance under the full vision conditions; however, the experiments did not show a pattern that was consistent with the FLE. Under the temporal occlusion condition, a prediction was not possible; rather a random estimation pattern was found around the centre of the prediction scale (3 m). Spatial occlusion did not affect errors and confidence of prediction. The experiments indicate that temporal constraints seem to be more critical than spatial constraints. The FLE may not apply to distance prediction compared to location estimation.

Suggested Citation

  • Gerrit Kollegger & Josef Wiemeyer & Marco Ewerton & Jan Peters, 2021. "Perception and prediction of the putting distance of robot putting movements under different visual/viewing conditions," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-31, April.
  • Handle: RePEc:plo:pone00:0249518
    DOI: 10.1371/journal.pone.0249518
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249518
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0249518&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0249518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0249518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.