IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0247099.html
   My bibliography  Save this article

Effect of bilateral contraction on the ability and accuracy of rapid force production at submaximal force level

Author

Listed:
  • Yoichi Ohta

Abstract

The present study aims to clarify the effects of bilateral contraction on the ability and accuracy of rapid force production at the submaximal force level. Eleven right-handed participants performed rapid gripping as fast and precisely as they could in unilateral (UL) and bilateral (BL) contractions in a standing position. Participants were required to impinge a grip force of 30% and 50% of their maximal voluntary contraction (MVC). Ability and accuracy of rapid force production were evaluated using the rate of force development (RFD) and force error, respectively. The data analysis did not observe a significant difference in the RFD between UL and BL contractions in both 30% (420±86 vs. 413±106%MVC/s, p = 0.34) and 50% of MVC (622±84 vs. 619±103%MVC/s, p = 0.77). Although the RFD to peak force ratio (RFD/PF) in BL contraction was lower than in UL in 30% of MVC (12.8±2.8 vs. 13.4±2.7, p = 0.003), it indicated a small effect size (d = 0.22) of the difference between UL and BL in RFD/PF. The absolute force error of BL contraction was higher than of UL contraction in 30% (4.67±2.64 vs. 3.64±1.13%MVC, p = 0.005) and 50% of MVC (5.53±2.94 vs. 3.53±0.71%MVC, p = 0.009). In addition, medium and large effect sizes were observed in absolute force error from 30% (d = 0.51) and 50% of MVC (d = 0.94), respectively. In conclusion, results indicated that the bilateral contraction reduced in the ability and accuracy of rapid force production at the submaximal force level. Nevertheless, the present results suggest that the noticeable effect of bilateral contraction is more prominent on the accuracy than in the ability of rapid force production at the submaximal force level.

Suggested Citation

  • Yoichi Ohta, 2021. "Effect of bilateral contraction on the ability and accuracy of rapid force production at submaximal force level," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-15, February.
  • Handle: RePEc:plo:pone00:0247099
    DOI: 10.1371/journal.pone.0247099
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247099
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0247099&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0247099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0247099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.