Author
Listed:
- Hui Huang
- Linlu Dong
- Zhishuang Xue
- Xiaofang Liu
- Caijian Hua
Abstract
Aiming at the situation that the existing visible and infrared images fusion algorithms only focus on highlighting infrared targets and neglect the performance of image details, and cannot take into account the characteristics of infrared and visible images, this paper proposes an image enhancement fusion algorithm combining Karhunen-Loeve transform and Laplacian pyramid fusion. The detail layer of the source image is obtained by anisotropic diffusion to get more abundant texture information. The infrared images adopt adaptive histogram partition and brightness correction enhancement algorithm to highlight thermal radiation targets. A novel power function enhancement algorithm that simulates illumination is proposed for visible images to improve the contrast of visible images and facilitate human observation. In order to improve the fusion quality of images, the source image and the enhanced images are transformed by Karhunen-Loeve to form new visible and infrared images. Laplacian pyramid fusion is performed on the new visible and infrared images, and superimposed with the detail layer images to obtain the fusion result. Experimental results show that the method in this paper is superior to several representative image fusion algorithms in subjective visual effects on public data sets. In terms of objective evaluation, the fusion result performed well on the 8 evaluation indicators, and its own quality was high.
Suggested Citation
Hui Huang & Linlu Dong & Zhishuang Xue & Xiaofang Liu & Caijian Hua, 2021.
"Fusion algorithm of visible and infrared image based on anisotropic diffusion and image enhancement (capitalize only the first word in a title (or heading), the first word in a subtitle (or subheading,"
PLOS ONE, Public Library of Science, vol. 16(2), pages 1-22, February.
Handle:
RePEc:plo:pone00:0245563
DOI: 10.1371/journal.pone.0245563
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0245563. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.