IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0243127.html
   My bibliography  Save this article

Personizing the prediction of future susceptibility to a specific disease

Author

Listed:
  • Kamal Taha
  • Ramana Davuluri
  • Paul Yoo
  • Jesse Spencer

Abstract

A traceable biomarker is a member of a disease’s molecular pathway. A disease may be associated with several molecular pathways. Each different combination of these molecular pathways, to which detected traceable biomarkers belong, may serve as an indicative of the elicitation of the disease at a different time frame in the future. Based on this notion, we introduce a novel methodology for personalizing an individual’s degree of future susceptibility to a specific disease. We implemented the methodology in a working system called Susceptibility Degree to a Disease Predictor (SDDP). For a specific disease d, let S be the set of molecular pathways, to which traceable biomarkers detected from most patients of d belong. For the same disease d, let S′ be the set of molecular pathways, to which traceable biomarkers detected from a certain individual belong. SDDP is able to infer the subset S′′ ⊆{S-S′} of undetected molecular pathways for the individual. Thus, SDDP can infer undetected molecular pathways of a disease for an individual based on few molecular pathways detected from the individual. SDDP can also help in inferring the combination of molecular pathways in the set {S′+S′′}, whose traceable biomarkers collectively is an indicative of the disease. SDDP is composed of the following four components: information extractor, interrelationship between molecular pathways modeler, logic inferencer, and risk indicator. The information extractor takes advantage of the exponential increase of biomedical literature to automatically extract the common traceable biomarkers for a specific disease. The interrelationship between molecular pathways modeler models the hierarchical interrelationships between the molecular pathways of the traceable biomarkers. The logic inferencer transforms the hierarchical interrelationships between the molecular pathways into rule-based specifications. It employs the specification rules and the inference rules for predicate logic to infer as many as possible undetected molecular pathways of a disease for an individual. The risk indicator outputs a risk indicator value that reflects the individual’s degree of future susceptibility to the disease. We evaluated SDDP by comparing it experimentally with other methods. Results revealed marked improvement.

Suggested Citation

  • Kamal Taha & Ramana Davuluri & Paul Yoo & Jesse Spencer, 2021. "Personizing the prediction of future susceptibility to a specific disease," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-26, January.
  • Handle: RePEc:plo:pone00:0243127
    DOI: 10.1371/journal.pone.0243127
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243127
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0243127&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0243127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0243127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.