IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0240615.html
   My bibliography  Save this article

Paraoxonase 3 gene polymorphisms are associated with occupational noise-induced deafness: A matched case-control study from China

Author

Listed:
  • Huaping Zhou
  • Jinpeng Zhou
  • Hui Li
  • Changye Hui
  • Jing Bi

Abstract

Chronic exposure to noise is a detrimental environmental factor that can contribute to occupational noise-induced deafness (ONID) in industrial workers. ONID is caused by both environmental and genetic factors, and negatively impacts workers and manufacturing industries in China. Polymorphisms in the paraoxonase 2 gene (PON2) is associated with noise-induced hearing loss, and PON3 expression may modulate oxidative stress in cells and tissues by reducing the levels of reactive oxygen species, which are prominent in ONID. We conducted a matched case-control study to investigate whether PON3 polymorphisms and activity were associated with susceptibility to ONID. We genotyped PON3 single nucleotide polymorphisms (SNPs) using Sanger sequencing and measured the plasma PON3 activity using enzyme-linked immunosorbent assay. Conditional logistic regression models were fitted to evaluate the potential risk factors of ONID. A total of 300 subjects were included (n = 150 ONID and n = 150 control cases) from October 2017 to October 2019. We identified two types of genotypes for the PON3 SNPs. The independent risk factors for ONID were genotype CT and allele C with Odd’s ratio (OR) = 2.12 (95% confidence interval [CI]: 1.18–3.84) and OR = 1.68 (95% CI: 1.06–2.66) for SNP rs11767787; AG and allele A with OR = 2.09 (95% CI: 1.25–3.47) and OR = 1.87 (95% CI: 1.19–2.93) for SNP rs13226149; and CT and allele T with OR = 2.59 (95% CI: 1.44–4.67) and OR = 1.95 (95% CI: 1.22–3.14) for SNP rs17882539, respectively. Furthermore, the plasma PON3 level (> 1504 U/L) was observed to be a protective factor associated with the lowest level of ONID (less than 991 U/L) after adjusting for confounding factors (OR = 0.27, 95% CI: 0.13–0.54). In conclusion, the PON3 polymorphisms rs11767787, rs13226149, and rs17882539 and plasma PON3 activity are associated with susceptibility to ONID in the Chinese population.

Suggested Citation

  • Huaping Zhou & Jinpeng Zhou & Hui Li & Changye Hui & Jing Bi, 2020. "Paraoxonase 3 gene polymorphisms are associated with occupational noise-induced deafness: A matched case-control study from China," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-16, October.
  • Handle: RePEc:plo:pone00:0240615
    DOI: 10.1371/journal.pone.0240615
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240615
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0240615&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0240615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0240615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.