IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0239504.html
   My bibliography  Save this article

Tracking individual honeybees among wildflower clusters with computer vision-facilitated pollinator monitoring

Author

Listed:
  • Malika Nisal Ratnayake
  • Adrian G Dyer
  • Alan Dorin

Abstract

Monitoring animals in their natural habitat is essential for advancement of animal behavioural studies, especially in pollination studies. Non-invasive techniques are preferred for these purposes as they reduce opportunities for research apparatus to interfere with behaviour. One potentially valuable approach is image-based tracking. However, the complexity of tracking unmarked wild animals using video is challenging in uncontrolled outdoor environments. Out-of-the-box algorithms currently present several problems in this context that can compromise accuracy, especially in cases of occlusion in a 3D environment. To address the issue, we present a novel hybrid detection and tracking algorithm to monitor unmarked insects outdoors. Our software can detect an insect, identify when a tracked insect becomes occluded from view and when it re-emerges, determine when an insect exits the camera field of view, and our software assembles a series of insect locations into a coherent trajectory. The insect detecting component of the software uses background subtraction and deep learning-based detection together to accurately and efficiently locate the insect among a cluster of wildflowers. We applied our method to track honeybees foraging outdoors using a new dataset that includes complex background detail, wind-blown foliage, and insects moving into and out of occlusion beneath leaves and among three-dimensional plant structures. We evaluated our software against human observations and previous techniques. It tracked honeybees at a rate of 86.6% on our dataset, 43% higher than the computationally more expensive, standalone deep learning model YOLOv2. We illustrate the value of our approach to quantify fine-scale foraging of honeybees. The ability to track unmarked insect pollinators in this way will help researchers better understand pollination ecology. The increased efficiency of our hybrid approach paves the way for the application of deep learning-based techniques to animal tracking in real-time using low-powered devices suitable for continuous monitoring.

Suggested Citation

  • Malika Nisal Ratnayake & Adrian G Dyer & Alan Dorin, 2021. "Tracking individual honeybees among wildflower clusters with computer vision-facilitated pollinator monitoring," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-20, February.
  • Handle: RePEc:plo:pone00:0239504
    DOI: 10.1371/journal.pone.0239504
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239504
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239504&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0239504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0239504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.