IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0238929.html
   My bibliography  Save this article

Estimation of the stable frozen zone volume and the extent of contrast for a therapeutic substance

Author

Listed:
  • Nikolai N Korpan
  • Sergey G Chefranov

Abstract

Background: In biomedical science and clinical practice, an estimation of the stable frozen zone volume and distribution of concentration fields of injected diagnostic and healing solutions in the tissues of living organisms is of great importance and does not currently have any mathematical solution aimed at its precise evaluation. Objective: The aim of this research is the estimation of the stable frozen zone volume at ultra-low temperatures as well as the distribution of temperature areas and concentration fields of injected diagnostic and healing substances in vitro. The results can improve our understanding of the stable frozen zone volume and the extent of contrast for a therapeutic substance. Materials and methods: A cryogenic zone (ice ball) was generated at -180°C using liquid nitrogen without any difficulties in vitro. The effects of freeze-thaw processes using ultra-low temperature and the cryogenic response of a 1.5% gelatin solution in water (%g/v) kept at a constant temperature of 20°C and continuously stirred were mathematically analyzed. The stable frozen zone volume was illustrated in vitro and measured in terms of its length, depth and cryogenic margin using a standard medical ruler and Vernier caliper after a freezing period at -180°C, using liquid nitrogen to provide cooling and freezing of a small portion of this solution in the vessel at room temperature (20°C). Round-shaped cryoprobes with diameters of 15 mm and 50 mm were applied to create a frozen zone volume in vitro. A single cryoprobe was used per procedure. The sample exposure time was 3 min. After this time, the volume of the frozen region remains unchanged, which indicates that the equilibrium stationary state has been reached. The experimental design, cryogenic procedure and freeze-thaw processes of the hemisphere were described and illustrated in vitro item by item. The statistical analysis manifested significant differences that were found between the 50 mm and 15 mm cryoprobes with regards to the freezing diameter, depth, and cryogenic margin (P

Suggested Citation

  • Nikolai N Korpan & Sergey G Chefranov, 2020. "Estimation of the stable frozen zone volume and the extent of contrast for a therapeutic substance," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-14, September.
  • Handle: RePEc:plo:pone00:0238929
    DOI: 10.1371/journal.pone.0238929
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238929
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0238929&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0238929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0238929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.