Author
Listed:
- Greg Guest
- Emily Namey
- Mario Chen
Abstract
Data saturation is the most commonly employed concept for estimating sample sizes in qualitative research. Over the past 20 years, scholars using both empirical research and mathematical/statistical models have made significant contributions to the question: How many qualitative interviews are enough? This body of work has advanced the evidence base for sample size estimation in qualitative inquiry during the design phase of a study, prior to data collection, but it does not provide qualitative researchers with a simple and reliable way to determine the adequacy of sample sizes during and/or after data collection. Using the principle of saturation as a foundation, we describe and validate a simple-to-apply method for assessing and reporting on saturation in the context of inductive thematic analyses. Following a review of the empirical research on data saturation and sample size estimation in qualitative research, we propose an alternative way to evaluate saturation that overcomes the shortcomings and challenges associated with existing methods identified in our review. Our approach includes three primary elements in its calculation and assessment: Base Size, Run Length, and New Information Threshold. We additionally propose a more flexible approach to reporting saturation. To validate our method, we use a bootstrapping technique on three existing thematically coded qualitative datasets generated from in-depth interviews. Results from this analysis indicate the method we propose to assess and report on saturation is feasible and congruent with findings from earlier studies.
Suggested Citation
Greg Guest & Emily Namey & Mario Chen, 2020.
"A simple method to assess and report thematic saturation in qualitative research,"
PLOS ONE, Public Library of Science, vol. 15(5), pages 1-17, May.
Handle:
RePEc:plo:pone00:0232076
DOI: 10.1371/journal.pone.0232076
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0232076. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.