IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225528.html
   My bibliography  Save this article

Testing Species Assignments in Extant Terebratulide Brachiopods: A Three-dimensional Geometric Morphometric Analysis of Long-Looped Brachidia

Author

Listed:
  • Natalia López Carranza
  • Sandra J Carlson

Abstract

Species of terebratulide brachiopods have been largely characterized qualitatively on the basis of morphology. Furthermore, species-level morphological variability has rarely been analyzed within a quantitative framework. The objective of our research is to quantify morphological variation to test the validity of extant named species of terebratulide brachiopods, focusing on the lophophore-supporting structures—the “long loops.” Long loops are the most distinctive and complex morphological feature in terebratellidine brachiopods and are considered to be phylogenetically and taxonomically informative. We studied eight species with problematic species identities in three genera distributed in the North Pacific: Laqueus, Terebratalia, and Dallinella. Given how geometrically complex long loops are, we generated 3D models from computed tomography (CT) scans of specimens of these eight species and analyzed them using 3D geometric morphometrics. Our goal was to determine ranges of variation and to test whether species are clearly distinguishable from one another in morphospace and statistically. Previous studies have suggested that some species might be overly split and are indistinguishable. Our results show that these extant species of terebratellidines can be reliably distinguished on the basis of quantitative loop morphometrics. Using 3D geometric morphometric methods, we demonstrate the utility of CT beyond purely descriptive imaging purposes in testing the morphometric validity of named species. It is crucial to treat species described and named from qualitative morphology as working hypotheses to be tested; many macroevolutionary studies depend upon the accurate assessment of species in order to identify and seek to explain macroevolutionary patterns. Our results provide quantitative documentation of the distinction of these species and thus engender greater confidence in their use to characterize macroevolutionary patterns among extant terebratellidine brachiopods. These methods, however, require further testing in extinct terebratellidines, which only rarely preserve the delicate long loop in three dimensions. In addition, molecular analyses of extant terebratellidines will test the species delimitations supported by the morphometric analyses presented in this study. [Species determination; morphological variability; 3D geometric morphometrics; terebratulide brachiopods; long loops.]

Suggested Citation

  • Natalia López Carranza & Sandra J Carlson, 2019. "Testing Species Assignments in Extant Terebratulide Brachiopods: A Three-dimensional Geometric Morphometric Analysis of Long-Looped Brachidia," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-20, November.
  • Handle: RePEc:plo:pone00:0225528
    DOI: 10.1371/journal.pone.0225528
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225528
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225528&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225528?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Akinobu Watanabe, 2018. "How many landmarks are enough to characterize shape and size variation?," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225528. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.