IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0205390.html
   My bibliography  Save this article

PCANet based nonlocal means method for speckle noise removal in ultrasound images

Author

Listed:
  • Houqiang Yu
  • Mingyue Ding
  • Xuming Zhang
  • Jinbo Wu

Abstract

Speckle reduction remains a critical issue for ultrasound image processing and analysis. The nonlocal means (NLM) filter has recently attached much attention due to its competitive despeckling performance. However, the existing NLM methods usually determine the similarity between two patches by directly utilizing the gray-level information of the noisy image, which renders it difficult to represent the structural similarity of ultrasound images effectively. To address this problem, the NLM method based on the simple deep learning baseline named PCANet is proposed by introducing the intrinsic features of image patches extracted by this network rather than the pixel intensities into the pixel similarity computation. In this approach, the improved two-stage PCANet is proposed by using Parametric Rectified Linear Unit (PReLU) activation function instead of the binary hashing and block histograms in the original PCANet. This model is firstly trained on the ultrasound database to learn the convolution kernels. Then, the trained PCANet is utilized to extract the intrinsic features from the image patches in the pre-denoised version of the noisy image to be despeckled. These obtained features are concatenated together to determine the structural similarity between image patches in the NLM method, based on which the weighted mean of all pixels in a search window is computed to produce the final despeckled image. Extensive experiments have been conducted on a variety of images to demonstrate the superiority of the proposed method over several well-known despeckling algorithm and the PCANet based NLM method using ReLU function and sigmoid function. Visual inspection indicates that the proposed method outperforms the compared methods in reducing speckle noise and preserving image details. The quantitative comparisons show that among all the evaluated methods, our method produces the best structural similarity index metrics (SSIM) values for the synthetic image, as well as the highest equivalent number of looks (ENL) value for the simulated image and the clinical ultrasound images.

Suggested Citation

  • Houqiang Yu & Mingyue Ding & Xuming Zhang & Jinbo Wu, 2018. "PCANet based nonlocal means method for speckle noise removal in ultrasound images," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
  • Handle: RePEc:plo:pone00:0205390
    DOI: 10.1371/journal.pone.0205390
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205390
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0205390&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0205390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0205390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.