Author
Listed:
- Jose Julio Gutiérrez
- Mikel Leturiondo
- Sofía Ruiz de Gauna
- Jesus María Ruiz
- Luis Alberto Leturiondo
- Digna María González-Otero
- Dana Zive
- James Knox Russell
- Mohamud Daya
Abstract
Background: During cardiopulmonary resuscitation (CPR), there is a high incidence of capnograms distorted by chest compression artifact. This phenomenon adversely affects the reliability of automated ventilation detection based on the analysis of the capnography waveform. This study explored the feasibility of several filtering techniques for suppressing the artifact to improve the accuracy of ventilation detection. Materials and methods: We gathered a database of 232 out-of-hospital cardiac arrest defibrillator recordings containing concurrent capnograms, compression depth and transthoracic impedance signals. Capnograms were classified as non-distorted or distorted by chest compression artifact. All chest compression and ventilation instances were also annotated. Three filtering techniques were explored: a fixed-coefficient (FC) filter, an open-loop (OL) adaptive filter, and a closed-loop (CL) adaptive filter. The improvement in ventilation detection was assessed by comparing the performance of a capnogram-based ventilation detection algorithm with original and filtered capnograms. Results: Sensitivity and positive predictive value of the ventilation algorithm improved from 91.9%/89.5% to 97.7%/96.5% (FC filter), 97.6%/96.7% (OL), and 97.0%/97.1% (CL) for the distorted capnograms (42% of the whole set). The highest improvement was obtained for the artifact named type III, for which performance improved from 77.8%/74.5% to values above 95.5%/94.5%. In addition, errors in the measurement of ventilation rate decreased and accuracy in the detection of over-ventilation increased with filtered capnograms. Conclusions: Capnogram-based ventilation detection during CPR was enhanced after suppressing the artifact caused by chest compressions. All filtering approaches performed similarly, so the simplicity of fixed-coefficient filters would take advantage for a practical implementation.
Suggested Citation
Jose Julio Gutiérrez & Mikel Leturiondo & Sofía Ruiz de Gauna & Jesus María Ruiz & Luis Alberto Leturiondo & Digna María González-Otero & Dana Zive & James Knox Russell & Mohamud Daya, 2018.
"Enhancing ventilation detection during cardiopulmonary resuscitation by filtering chest compression artifact from the capnography waveform,"
PLOS ONE, Public Library of Science, vol. 13(8), pages 1-14, August.
Handle:
RePEc:plo:pone00:0201565
DOI: 10.1371/journal.pone.0201565
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0201565. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.