IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0200094.html
   My bibliography  Save this article

A robust gene regulatory network inference method base on Kalman filter and linear regression

Author

Listed:
  • Jamshid Pirgazi
  • Ali Reza Khanteymoori

Abstract

The reconstruction of the topology of gene regulatory networks (GRNs) using high throughput genomic data such as microarray gene expression data is an important problem in systems biology. The main challenge in gene expression data is the high number of genes and low number of samples; also the data are often impregnated with noise. In this paper, in dealing with the noisy data, Kalman filter based method that has the ability to use prior knowledge on learning the network was used. In the proposed method namely (KFLR), in the first phase by using mutual information, the noisy regulations with low correlations were removed. The proposed method utilized a new closed form solution to compute the posterior probabilities of the edges from regulators to the target gene within a hybrid framework of Bayesian model averaging and linear regression methods. In order to show the efficiency, the proposed method was compared with several well know methods. The results of the evaluation indicate that the inference accuracy was improved by the proposed method which also demonstrated better regulatory relations with the noisy data.

Suggested Citation

  • Jamshid Pirgazi & Ali Reza Khanteymoori, 2018. "A robust gene regulatory network inference method base on Kalman filter and linear regression," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-17, July.
  • Handle: RePEc:plo:pone00:0200094
    DOI: 10.1371/journal.pone.0200094
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200094
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0200094&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0200094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Ajmal Hamda B. & Madden Michael G., 2020. "Inferring dynamic gene regulatory networks with low-order conditional independencies – an evaluation of the method," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0200094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.