IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0189323.html
   My bibliography  Save this article

Adaptations in antagonist co-activation: Role in the repeated-bout effect

Author

Listed:
  • Robert E Hight
  • Travis W Beck
  • Debra A Bemben
  • Christopher D Black

Abstract

Eccentric exercise results in an adaptation which attenuates muscle damage from subsequent exercise—termed the “repeated-bout effect (RBE).” Purpose: Study examined antagonist co-activation and motor-unit recruitment strategy, assessed via dEMG, concomitant to the RBE. Methods: Nine participants performed 5 sub-maximal isometric trapezoid (ramp-up, hold, ramp-down) contractions at force levels corresponding to 50% and 80% of maximal isometric strength (MVC). Surface EMG signals of the biceps brachii were decomposed into individual motor-unit action potential trains. The relationship between mean firing rate (MFR) of each motor-unit and its recruitment threshold (RT) was examined using linear regression. Eccentric exercise was then performed until biceps brachii MVC had decreased by ~40%. Surface EMG of the biceps and triceps were collected during eccentric exercise. MVC, range-of-motion (ROM), and delayed onset muscle soreness (DOMS) were measured 24-hours, 72-hours, and 1-week following eccentric exercise. Three weeks later all procedures were repeated. Results: Changes in MVC (-32±14% vs -25±10%; p = 0.034), ROM (-11% vs 6%; p = 0.01), and DOMS (31.0±19mm vs 19±12mm; p = 0.015) were attenuated following the second bout of exercise. Triceps EMG was reduced (16.8±9.5% vs. 12.6±7.2%; p = 0.03) during the second bout of eccentric exercise. The slope (-0.60±0.13 vs -0.70±0.18; p = 0.029) and y-intercept (46.5±8.3 vs 53.3±8.8; p = 0.020) of the MFR vs. RT relationship was altered during contractions at 80% of MVC prior to the second bout of eccentric exercise. No changes were observed at 50% of MVC. Conclusion: A reduction in antagonist co-activation during the second bout of eccentric exercise suggests less total force was required to move an identical external load. This finding is supported by the increased negative slope coefficient and an increased y-intercept of the linear relationship between RT and MFR.

Suggested Citation

  • Robert E Hight & Travis W Beck & Debra A Bemben & Christopher D Black, 2017. "Adaptations in antagonist co-activation: Role in the repeated-bout effect," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0189323
    DOI: 10.1371/journal.pone.0189323
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189323
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0189323&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0189323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0189323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.