IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0186058.html
   My bibliography  Save this article

Wavelet Imaging on Multiple Scales (WIMS) reveals focal adhesion distributions, dynamics and coupling between actomyosin bundle stability

Author

Listed:
  • Tim Toplak
  • Benoit Palmieri
  • Alba Juanes-García
  • Miguel Vicente-Manzanares
  • Martin Grant
  • Paul W Wiseman

Abstract

We introduce and use Wavelet Imaging on Multiple Scales (WIMS) as an improvement to fluorescence correlation spectroscopy to measure physical processes and features that occur across multiple length scales. In this study, wavelet transforms of cell images are used to characterize molecular dynamics at the cellular and subcellular levels (i.e. focal adhesions). We show the usefulness of the technique by applying WIMS to an image time series of a migrating osteosarcoma cell expressing fluorescently labelled adhesion proteins, which allows us to characterize different components of the cell ranging from optical resolution scale through to focal adhesion and whole cell size scales. Using WIMS we measured focal adhesion numbers, orientation and cell boundary velocities for retraction and protrusion. We also determine the internal dynamics of individual focal adhesions undergoing assembly, disassembly or elongation. Thus confirming as previously shown, WIMS reveals that the number of adhesions and the area of the protruding region of the cell are strongly correlated, establishing a correlation between protrusion size and adhesion dynamics. We also apply this technique to characterize the behavior of adhesions, actin and myosin in Chinese hamster ovary cells expressing a mutant form of myosin IIB (1935D) that displays decreased filament stability and impairs front-back cell polarity. We find separate populations of actin and myosin at each adhesion pole for both the mutant and wild type form. However, we find these populations move rapidly inwards toward one another in the mutant case in contrast to the cells that express wild type myosin IIB where those populations remain stationary. Results obtained with these two systems demonstrate how WIMS has the potential to reveal novel correlations between chosen parameters that belong to different scales.

Suggested Citation

  • Tim Toplak & Benoit Palmieri & Alba Juanes-García & Miguel Vicente-Manzanares & Martin Grant & Paul W Wiseman, 2017. "Wavelet Imaging on Multiple Scales (WIMS) reveals focal adhesion distributions, dynamics and coupling between actomyosin bundle stability," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-24, October.
  • Handle: RePEc:plo:pone00:0186058
    DOI: 10.1371/journal.pone.0186058
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186058
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0186058&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0186058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mathew E Berginski & Eric A Vitriol & Klaus M Hahn & Shawn M Gomez, 2011. "High-Resolution Quantification of Focal Adhesion Spatiotemporal Dynamics in Living Cells," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolei Zhang & Weijun Pan, 2019. "Exon prediction based on multiscale products of a genomic-inspired multiscale bilateral filtering," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisa Laux & Marie F A Cutiongco & Nikolaj Gadegaard & Bjørn Sand Jensen, 2020. "Interactive machine learning for fast and robust cell profiling," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
    2. Vincent On & Atena Zahedi & Iryna M Ethell & Bir Bhanu, 2017. "Automated spatio-temporal analysis of dendritic spines and related protein dynamics," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-23, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0186058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.