IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0183338.html
   My bibliography  Save this article

Hyperspectral prediction of leaf area index of winter wheat in irrigated and rainfed fields

Author

Listed:
  • Guangxin Li
  • Chao Wang
  • Meichen Feng
  • Wude Yang
  • Fangzhou Li
  • Ruiyun Feng

Abstract

The growth status of winter wheat in irrigated field and rainfed field are obviously different and the field types may have an effect on the predictive accuracy of hyperspectral model. The objectives of the present study were to understand the difference of spectral sensitive wavelengths for leaf area index (LAI) in two field types and realize its hyperspectral prediction. In study, a total of 31 and 28 sample sites in irrigated fields and rainfed fields respectively were selected from Wenxi County, and the LAI and canopy spectra were also collected at the main grow stage of winter wheat. The method of successive projections algorithm (SPA) was applied by selecting the important wavelengths, and the multiple linear regression (MLR) and partial least squares regression (PLSR) were used to construct the predictive model based on the important wavelengths and full wavelengths, respectively. Moreover, the parameters of variable importance project (VIP) and B-coefficient derived from PLSR analysis were implemented to validate the evaluated wavelengths using the SPA method. The sensitive wavelengths of LAI for irrigated field and rainfed field were 404, 407, 413, 417, 450, 677, 715, 735, 816, 1127 and 404, 406, 432, 501, 540, 679, 727, 779, 1120, 1290 nm, respectively, and these wavelengths proved to be highly correlated with LAI. Compared with the model performance based on the SPA-MLR and PLSR methods, the method of SPA-MLR was proved to be better (rainfed field: R2 = 0.736, RMSE = 1.169, RPD = 1.6245; irrigated field: R2 = 0.716, RMSE = 1.059, RPD = 1.538). Moreover, the predictive model of LAI in rainfed fields had a better accuracy than the model in irrigated fields. The results from this study indicated that it was necessary to classify the field type while monitoring the winter wheat using the remote sensing technology. This study also demonstrated that the multivariate method of SPA-MLR could accurately evaluate the sensitive wavelengths and construct the predictive model of LAI.

Suggested Citation

  • Guangxin Li & Chao Wang & Meichen Feng & Wude Yang & Fangzhou Li & Ruiyun Feng, 2017. "Hyperspectral prediction of leaf area index of winter wheat in irrigated and rainfed fields," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
  • Handle: RePEc:plo:pone00:0183338
    DOI: 10.1371/journal.pone.0183338
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183338
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183338&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0183338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0183338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.