IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0177686.html
   My bibliography  Save this article

All atom NMDA receptor transmembrane domain model development and simulations in lipid bilayers and water

Author

Listed:
  • Samaneh Mesbahi-Vasey
  • Lea Veras
  • Michael Yonkunas
  • Jon W Johnson
  • Maria G Kurnikova

Abstract

N-methyl-d-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family that mediate excitatory synaptic transmission in the central nervous system. The channels of NMDARs are permeable to Ca2+ but blocked by Mg2+, distinctive properties that underlie essential brain processes such as induction of synaptic plasticity. However, due to limited structural information about the NMDAR transmembrane ion channel forming domain, the mechanism of divalent cation permeation and block is understood poorly. In this paper we developed an atomistic model of the transmembrane domain (TMD) of NMDARs composed of GluN1 and GluN2A subunits (GluN1/2A receptors). The model was generated using (a) a homology model based on the structure of the NaK channel and a partially resolved structure of an AMPA receptor (AMPAR), and (b) a partially resolved X-ray structure of GluN1/2B NMDARs. Refinement and extensive Molecular Dynamics (MD) simulations of the NMDAR TMD model were performed in explicit lipid bilayer membrane and water. Targeted MD with simulated annealing was introduced to promote structure refinement. Putative positions of the Mg2+ and Ca2+ ions in the ion channel divalent cation binding site are proposed. Differences in the structural and dynamic behavior of the channel protein in the presence of Mg2+ or Ca2+ are analyzed. NMDAR protein conformational flexibility was similar with no ion bound to the divalent cation binding site and with Ca2+ bound, whereas Mg2+ binding reduced protein fluctuations. While bound at the binding site both ions retained their preferred ligand coordination numbers: 6 for Mg2+, and 7–8 for Ca2+. Four asparagine side chain oxygens, a back-bone oxygen, and a water molecule participated in binding a Mg2+ ion. The Ca2+ ion first coordination shell ligands typically included four to five side-chain oxygen atoms of the binding site asparagine residues, two water molecules and zero to two backbone oxygens of the GluN2B subunits. These results demonstrate the importance of high-resolution channel structures for elucidation of mechanisms of NMDAR permeation and block.

Suggested Citation

  • Samaneh Mesbahi-Vasey & Lea Veras & Michael Yonkunas & Jon W Johnson & Maria G Kurnikova, 2017. "All atom NMDA receptor transmembrane domain model development and simulations in lipid bilayers and water," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-22, June.
  • Handle: RePEc:plo:pone00:0177686
    DOI: 10.1371/journal.pone.0177686
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177686
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0177686&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0177686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0177686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.