IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0174963.html
   My bibliography  Save this article

Approximation of Nash equilibria and the network community structure detection problem

Author

Listed:
  • Suciu Mihai-Alexandru
  • Gaskó Noémi
  • Lung Rodica Ioana

Abstract

Game theory based methods designed to solve the problem of community structure detection in complex networks have emerged in recent years as an alternative to classical and optimization based approaches. The Mixed Nash Extremal Optimization uses a generative relation for the characterization of Nash equilibria to identify the community structure of a network by converting the problem into a non-cooperative game. This paper proposes a method to enhance this algorithm by reducing the number of payoff function evaluations. Numerical experiments performed on synthetic and real-world networks show that this approach is efficient, with results better or just as good as other state-of-the-art methods.

Suggested Citation

  • Suciu Mihai-Alexandru & Gaskó Noémi & Lung Rodica Ioana, 2017. "Approximation of Nash equilibria and the network community structure detection problem," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-24, May.
  • Handle: RePEc:plo:pone00:0174963
    DOI: 10.1371/journal.pone.0174963
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174963
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0174963&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0174963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rodica Ioana Lung & Camelia Chira & Anca Andreica, 2014. "Game Theory and Extremal Optimization for Community Detection in Complex Dynamic Networks," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    2. Supreet Mandala & Soundar Kumara & Kalyan Chatterjee, 2014. "A Game-Theoretic Approach to Graph Clustering," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 629-643, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Shan Sung & Dashun Wang & Soundar Kumara, 0. "Uncovering the effect of dominant attributes on community topology: A case of facebook networks," Information Systems Frontiers, Springer, vol. 0, pages 1-12.
    2. Yi-Shan Sung & Dashun Wang & Soundar Kumara, 2018. "Uncovering the effect of dominant attributes on community topology: A case of facebook networks," Information Systems Frontiers, Springer, vol. 20(5), pages 1041-1052, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0174963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.