IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0169455.html
   My bibliography  Save this article

Cooperative Interactions between Different Classes of Disordered Proteins Play a Functional Role in the Nuclear Pore Complex of Baker’s Yeast

Author

Listed:
  • David Ando
  • Ajay Gopinathan

Abstract

Nucleocytoplasmic transport is highly selective, efficient, and is regulated by a poorly understood mechanism involving hundreds of disordered FG nucleoporin proteins (FG nups) lining the inside wall of the nuclear pore complex (NPC). Previous research has concluded that FG nups in Baker’s yeast (S. cerevisiae) are present in a bimodal distribution, with the “Forest Model” classifying FG nups as either di-block polymer like “trees” or single-block polymer like “shrubs”. Using a combination of coarse-grained modeling and polymer brush modeling, the function of the di-block FG nups has previously been hypothesized in the Di-block Copolymer Brush Gate (DCBG) model to form a higher-order polymer brush architecture which can open and close to regulate transport across the NPC. In this manuscript we work to extend the original DCBG model by first performing coarse grained simulations of the single-block FG nups which confirm that they have a single block polymer structure rather than the di-block structure of tree nups. Our molecular simulations also demonstrate that these single-block FG nups are likely cohesive, compact, collapsed coil polymers, implying that these FG nups are generally localized to their grafting location within the NPC. We find that adding a layer of single-block FG nups to the DCBG model increases the range of cargo sizes which are able to translocate the pore through a cooperative effect involving single-block and di-block FG nups. This effect can explain the puzzling connection between single-block FG nup deletion mutants in S. cerevisiae and the resulting failure of certain large cargo transport through the NPC. Facilitation of large cargo transport via single-block and di-block FG nup cooperativity in the nuclear pore could provide a model mechanism for designing future biomimetic pores of greater applicability.

Suggested Citation

  • David Ando & Ajay Gopinathan, 2017. "Cooperative Interactions between Different Classes of Disordered Proteins Play a Functional Role in the Nuclear Pore Complex of Baker’s Yeast," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-16, January.
  • Handle: RePEc:plo:pone00:0169455
    DOI: 10.1371/journal.pone.0169455
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169455
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0169455&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0169455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0169455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.