IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0159302.html
   My bibliography  Save this article

Machine Learning of Protein Interactions in Fungal Secretory Pathways

Author

Listed:
  • Jana Kludas
  • Mikko Arvas
  • Sandra Castillo
  • Tiina Pakula
  • Merja Oja
  • Céline Brouard
  • Jussi Jäntti
  • Merja Penttilä
  • Juho Rousu

Abstract

In this paper we apply machine learning methods for predicting protein interactions in fungal secretion pathways. We assume an inter-species transfer setting, where training data is obtained from a single species and the objective is to predict protein interactions in other, related species. In our methodology, we combine several state of the art machine learning approaches, namely, multiple kernel learning (MKL), pairwise kernels and kernelized structured output prediction in the supervised graph inference framework. For MKL, we apply recently proposed centered kernel alignment and p-norm path following approaches to integrate several feature sets describing the proteins, demonstrating improved performance. For graph inference, we apply input-output kernel regression (IOKR) in supervised and semi-supervised modes as well as output kernel trees (OK3). In our experiments simulating increasing genetic distance, Input-Output Kernel Regression proved to be the most robust prediction approach. We also show that the MKL approaches improve the predictions compared to uniform combination of the kernels. We evaluate the methods on the task of predicting protein-protein-interactions in the secretion pathways in fungi, S.cerevisiae, baker’s yeast, being the source, T. reesei being the target of the inter-species transfer learning. We identify completely novel candidate secretion proteins conserved in filamentous fungi. These proteins could contribute to their unique secretion capabilities.

Suggested Citation

  • Jana Kludas & Mikko Arvas & Sandra Castillo & Tiina Pakula & Merja Oja & Céline Brouard & Jussi Jäntti & Merja Penttilä & Juho Rousu, 2016. "Machine Learning of Protein Interactions in Fungal Secretory Pathways," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-20, July.
  • Handle: RePEc:plo:pone00:0159302
    DOI: 10.1371/journal.pone.0159302
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159302
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0159302&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0159302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin A Shoemaker & Anna R Panchenko, 2007. "Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners," PLOS Computational Biology, Public Library of Science, vol. 3(4), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyi Liu & Bin Liu & Zhimin Huang & Ting Shi & Yingyi Chen & Jian Zhang, 2012. "SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-6, January.
    2. Chuanhua Xing & David B Dunson, 2011. "Bayesian Inference for Genomic Data Integration Reduces Misclassification Rate in Predicting Protein-Protein Interactions," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-10, July.
    3. Saket Navlakha & Anthony Gitter & Ziv Bar-Joseph, 2012. "A Network-based Approach for Predicting Missing Pathway Interactions," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-13, August.
    4. Saeid Rasti & Chrysafis Vogiatzis, 2019. "A survey of computational methods in protein–protein interaction networks," Annals of Operations Research, Springer, vol. 276(1), pages 35-87, May.
    5. Guilherme T Valente & Marcio L Acencio & Cesar Martins & Ney Lemke, 2013. "The Development of a Universal In Silico Predictor of Protein-Protein Interactions," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    6. Wei Zhang & Jia Xu & Yuanyuan Li & Xiufen Zou, 2017. "A new two-stage method for revealing missing parts of edges in protein-protein interaction networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    7. Hai-Bo Zhang & Xiao-Bao Ding & Jie Jin & Wen-Ping Guo & Qiao-Lei Yang & Peng-Cheng Chen & Heng Yao & Li Ruan & Yu-Tian Tao & Xin Chen, 2022. "Predicted mouse interactome and network-based interpretation of differentially expressed genes," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-16, April.
    8. Zhu-Hong You & Keith C C Chan & Pengwei Hu, 2015. "Predicting Protein-Protein Interactions from Primary Protein Sequences Using a Novel Multi-Scale Local Feature Representation Scheme and the Random Forest," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-19, May.
    9. Vijaykumar Yogesh Muley & Akash Ranjan, 2012. "Effect of Reference Genome Selection on the Performance of Computational Methods for Genome-Wide Protein-Protein Interaction Prediction," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-13, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0159302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.