IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0153172.html
   My bibliography  Save this article

Theory on the Mechanism of DNA Renaturation: Stochastic Nucleation and Zipping

Author

Listed:
  • Gnanapragasam Niranjani
  • Rajamanickam Murugan

Abstract

Renaturation of the complementary single strands of DNA is one of the important processes that requires better understanding in the view of molecular biology and biological physics. Here we develop a stochastic dynamical model on the DNA renaturation. According to our model there are at least three steps in the renaturation process viz. nonspecific-contact formation, correct-contact formation and nucleation, and zipping. Most of the earlier two-state models combined nucleation with nonspecific-contact formation step. In our model we suggest that it is considerably meaningful when we combine the nucleation with the zipping since nucleation is the initial step of zipping and nucleated and zipping molecules are indistinguishable. Nonspecific contact formation step is a pure three-dimensional diffusion controlled collision process. Whereas nucleation involves several rounds of one-dimensional slithering and internal displacement dynamics of one single strand of DNA on the other complementary strand in the process of searching for the correct-contact and then initiate nucleation. Upon nucleation, the stochastic zipping follows to generate a fully renatured double stranded DNA. It seems that the square-root dependency of the overall renaturation rate constant on the length of reacting single strands originates mainly from the geometric constraints in the diffusion controlled nonspecific-contact formation step. Further the inverse scaling of the renaturation rate on the viscosity of reaction medium also originates from nonspecific contact formation step. On the other hand the inverse scaling of the renaturation rate with the sequence complexity originates from the stochastic zipping which involves several rounds of crossing over the free-energy barrier at microscopic levels. When the sequence of renaturing single strands of DNA is repetitive with less complexity then the cooperative effects will not be noticeable since the parallel zipping will be a dominant enhancing factor. However for DNA strands with high sequence complexity and length one needs to consider the underlying cooperative effects both at microscopic and macroscopic levels to explain various scaling behaviours of the overall renaturation rate.

Suggested Citation

  • Gnanapragasam Niranjani & Rajamanickam Murugan, 2016. "Theory on the Mechanism of DNA Renaturation: Stochastic Nucleation and Zipping," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-28, April.
  • Handle: RePEc:plo:pone00:0153172
    DOI: 10.1371/journal.pone.0153172
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153172
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0153172&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0153172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0153172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.