IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0144282.html
   My bibliography  Save this article

Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods

Author

Listed:
  • Pall Jens Reynisson
  • Marta Scali
  • Erik Smistad
  • Erlend Fagertun Hofstad
  • Håkon Olav Leira
  • Frank Lindseth
  • Toril Anita Nagelhus Hernes
  • Tore Amundsen
  • Hanne Sorger
  • Thomas Langø

Abstract

Introduction: Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs. Time consumption and logistics are two essential aspects that need to be optimized when integrating such technologies in the interventional room. We compared three different approaches to obtain airway centerlines and surface. Method: CT lung dataset of 17 patients were processed in Mimics (Materialize, Leuven, Belgium), which provides a Basic module and a Pulmonology module (beta version) (MPM), OsiriX (Pixmeo, Geneva, Switzerland) and our Tube Segmentation Framework (TSF) method. Both MPM and TSF were evaluated with reference segmentation. Automatic and manual settings allowed us to segment the airways and obtain 3D models as well as the centrelines in all datasets. We compared the different procedures by user interactions such as number of clicks needed to process the data and quantitative measures concerning the quality of the segmentation and centrelines such as total length of the branches, number of branches, number of generations, and volume of the 3D model. Results: The TSF method was the most automatic, while the Mimics Pulmonology Module (MPM) and the Mimics Basic Module (MBM) resulted in the highest number of branches. MPM is the software which demands the least number of clicks to process the data. We found that the freely available OsiriX was less accurate compared to the other methods regarding segmentation results. However, the TSF method provided results fastest regarding number of clicks. The MPM was able to find the highest number of branches and generations. On the other hand, the TSF is fully automatic and it provides the user with both segmentation of the airways and the centerlines. Reference segmentation comparison averages and standard deviations for MPM and TSF correspond to literature. Conclusion: The TSF is able to segment the airways and extract the centerlines in one single step. The number of branches found is lower for the TSF method than in Mimics. OsiriX demands the highest number of clicks to process the data, the segmentation is often sparse and extracting the centerline requires the use of another software system. Two of the software systems performed satisfactory with respect to be used in preprocessing CT images for navigated bronchoscopy, i.e. the TSF method and the MPM. According to reference segmentation both TSF and MPM are comparable with other segmentation methods. The level of automaticity and the resulting high number of branches plus the fact that both centerline and the surface of the airways were extracted, are requirements we considered particularly important. The in house method has the advantage of being an integrated part of a navigation platform for bronchoscopy, whilst the other methods can be considered preprocessing tools to a navigation system.

Suggested Citation

  • Pall Jens Reynisson & Marta Scali & Erik Smistad & Erlend Fagertun Hofstad & Håkon Olav Leira & Frank Lindseth & Toril Anita Nagelhus Hernes & Tore Amundsen & Hanne Sorger & Thomas Langø, 2015. "Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0144282
    DOI: 10.1371/journal.pone.0144282
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144282
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0144282&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0144282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0144282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.