IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0142502.html
   My bibliography  Save this article

Towards Quantitative Spatial Models of Seabed Sediment Composition

Author

Listed:
  • David Stephens
  • Markus Diesing

Abstract

There is a need for fit-for-purpose maps for accurately depicting the types of seabed substrate and habitat and the properties of the seabed for the benefits of research, resource management, conservation and spatial planning. The aim of this study is to determine whether it is possible to predict substrate composition across a large area of seabed using legacy grain-size data and environmental predictors. The study area includes the North Sea up to approximately 58.44°N and the United Kingdom’s parts of the English Channel and the Celtic Seas. The analysis combines outputs from hydrodynamic models as well as optical remote sensing data from satellite platforms and bathymetric variables, which are mainly derived from acoustic remote sensing. We build a statistical regression model to make quantitative predictions of sediment composition (fractions of mud, sand and gravel) using the random forest algorithm. The compositional data is analysed on the additive log-ratio scale. An independent test set indicates that approximately 66% and 71% of the variability of the two log-ratio variables are explained by the predictive models. A EUNIS substrate model, derived from the predicted sediment composition, achieved an overall accuracy of 83% and a kappa coefficient of 0.60. We demonstrate that it is feasible to spatially predict the seabed sediment composition across a large area of continental shelf in a repeatable and validated way. We also highlight the potential for further improvements to the method.

Suggested Citation

  • David Stephens & Markus Diesing, 2015. "Towards Quantitative Spatial Models of Seabed Sediment Composition," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-23, November.
  • Handle: RePEc:plo:pone00:0142502
    DOI: 10.1371/journal.pone.0142502
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142502
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0142502&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0142502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward J Gregr & Dana R Haggarty & Sarah C Davies & Cole Fields & Joanne Lessard, 2021. "Comprehensive marine substrate classification applied to Canada’s Pacific shelf," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-28, October.
    2. Luisetti, Tiziana & Turner, R. Kerry & Andrews, Julian E. & Jickells, Timothy D. & Kröger, Silke & Diesing, Markus & Paltriguera, Lucille & Johnson, Martin T. & Parker, Eleanor R. & Bakker, Dorothee , 2019. "Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in the UK," Ecosystem Services, Elsevier, vol. 35(C), pages 67-76.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0142502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.