IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0142102.html
   My bibliography  Save this article

COGNIZER: A Framework for Functional Annotation of Metagenomic Datasets

Author

Listed:
  • Tungadri Bose
  • Mohammed Monzoorul Haque
  • CVSK Reddy
  • Sharmila S Mande

Abstract

Background: Recent advances in sequencing technologies have resulted in an unprecedented increase in the number of metagenomes that are being sequenced world-wide. Given their volume, functional annotation of metagenomic sequence datasets requires specialized computational tools/techniques. In spite of having high accuracy, existing stand-alone functional annotation tools necessitate end-users to perform compute-intensive homology searches of metagenomic datasets against "multiple" databases prior to functional analysis. Although, web-based functional annotation servers address to some extent the problem of availability of compute resources, uploading and analyzing huge volumes of sequence data on a shared public web-service has its own set of limitations. In this study, we present COGNIZER, a comprehensive stand-alone annotation framework which enables end-users to functionally annotate sequences constituting metagenomic datasets. The COGNIZER framework provides multiple workflow options. A subset of these options employs a novel directed-search strategy which helps in reducing the overall compute requirements for end-users. The COGNIZER framework includes a cross-mapping database that enables end-users to simultaneously derive/infer KEGG, Pfam, GO, and SEED subsystem information from the COG annotations. Results: Validation experiments performed with real-world metagenomes and metatranscriptomes, generated using diverse sequencing technologies, indicate that the novel directed-search strategy employed in COGNIZER helps in reducing the compute requirements without significant loss in annotation accuracy. A comparison of COGNIZER's results with pre-computed benchmark values indicate the reliability of the cross-mapping database employed in COGNIZER. Conclusion: The COGNIZER framework is capable of comprehensively annotating any metagenomic or metatranscriptomic dataset from varied sequencing platforms in functional terms. Multiple search options in COGNIZER provide end-users the flexibility of choosing a homology search protocol based on available compute resources. The cross-mapping database in COGNIZER is of high utility since it enables end-users to directly infer/derive KEGG, Pfam, GO, and SEED subsystem annotations from COG categorizations. Furthermore, availability of COGNIZER as a stand-alone scalable implementation is expected to make it a valuable annotation tool in the field of metagenomic research. Availability and Implementation: A Linux implementation of COGNIZER is freely available for download from the following links: http://metagenomics.atc.tcs.com/cognizer, https://metagenomics.atc.tcs.com/function/cognizer.

Suggested Citation

  • Tungadri Bose & Mohammed Monzoorul Haque & CVSK Reddy & Sharmila S Mande, 2015. "COGNIZER: A Framework for Functional Annotation of Metagenomic Datasets," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-16, November.
  • Handle: RePEc:plo:pone00:0142102
    DOI: 10.1371/journal.pone.0142102
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142102
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0142102&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0142102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0142102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.