IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0141930.html
   My bibliography  Save this article

State Estimation of the Time-Varying and Spatially Localized Concentration of Signal Molecules from the Stochastic Adsorption Dynamics on the Carbon Nanotube-Based Sensors and Its Application to Tumor Cell Detection

Author

Listed:
  • Hong Jang
  • Jay H Lee
  • Richard D Braatz

Abstract

This paper addresses a problem of estimating time-varying, local concentrations of signal molecules with a carbon-nanotube (CNT)-based sensor array system, which sends signals triggered by monomolecular adsorption/desorption events of proximate molecules on the surfaces of the sensors. Such sensors work on nano-scale phenomena and show inherently stochastic non-Gaussian behavior, which is best represented by the chemical master equation (CME) describing the time evolution of the probabilities for all the possible number of adsorbed molecules. In the CME, the adsorption rate on each sensor is linearly proportional to the local concentration in the bulk phase. State estimators are proposed for these types of sensors that fully address their stochastic nature. For CNT-based sensors motivated by tumor cell detection, the particle filter, which is nonparametric and can handle non-Gaussian distributions, is compared to a Kalman filter that approximates the underlying distributions by Gaussians. In addition, the second-order generalized pseudo Bayesian estimation (GPB2) algorithm and the Markov chain Monte Carlo (MCMC) algorithm are incorporated into KF and PF respectively, for detecting latent drift in the concentration affected by different states of a cell.

Suggested Citation

  • Hong Jang & Jay H Lee & Richard D Braatz, 2015. "State Estimation of the Time-Varying and Spatially Localized Concentration of Signal Molecules from the Stochastic Adsorption Dynamics on the Carbon Nanotube-Based Sensors and Its Application to Tumor," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-21, November.
  • Handle: RePEc:plo:pone00:0141930
    DOI: 10.1371/journal.pone.0141930
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141930
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141930&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0141930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0141930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.