IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0135875.html
   My bibliography  Save this article

An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification

Author

Listed:
  • Muhammad Faisal Siddiqui
  • Ahmed Wasif Reza
  • Jeevan Kanesan

Abstract

A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients’ benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the individual subjects, therefore, it can be used as a significant tool in clinical practice.

Suggested Citation

  • Muhammad Faisal Siddiqui & Ahmed Wasif Reza & Jeevan Kanesan, 2015. "An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-16, August.
  • Handle: RePEc:plo:pone00:0135875
    DOI: 10.1371/journal.pone.0135875
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135875
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0135875&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0135875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0135875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.