IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0117206.html
   My bibliography  Save this article

Brain Expressed and X-Linked (Bex) Proteins Are Intrinsically Disordered Proteins (IDPs) and Form New Signaling Hubs

Author

Listed:
  • Eva M Fernandez
  • María D Díaz-Ceso
  • Marçal Vilar

Abstract

Intrinsically disordered proteins (IDPs) are abundant in complex organisms. Due to their promiscuous nature and their ability to adopt several conformations IDPs constitute important points of network regulation. The family of Brain Expressed and X-linked (Bex) proteins consists of 5 members in humans (Bex1-5). Recent reports have implicated Bex proteins in transcriptional regulation and signaling pathways involved in neurodegeneration, cancer, cell cycle and tumor growth. However, structural and biophysical data for this protein family is almost non-existent. We used bioinformatics analyses to show that Bex proteins contain long regions of intrinsic disorder which are conserved across all members. Moreover, we confirmed the intrinsic disorder by circular dichroism spectroscopy of Bex1 after expression and purification in E. coli. These observations strongly suggest that Bex proteins constitute a new group of IDPs. Based on these findings, together with the demonstrated promiscuity of Bex proteins and their involvement in different signaling pathways, we propose that Bex family members play important roles in the formation of protein network hubs.

Suggested Citation

  • Eva M Fernandez & María D Díaz-Ceso & Marçal Vilar, 2015. "Brain Expressed and X-Linked (Bex) Proteins Are Intrinsically Disordered Proteins (IDPs) and Form New Signaling Hubs," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-19, January.
  • Handle: RePEc:plo:pone00:0117206
    DOI: 10.1371/journal.pone.0117206
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117206
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0117206&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0117206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyi Liu & Bin Liu & Zhimin Huang & Ting Shi & Yingyi Chen & Jian Zhang, 2012. "SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-6, January.
    2. Guilhem Faure & Isabelle Callebaut, 2013. "Comprehensive Repertoire of Foldable Regions within Whole Genomes," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-14, October.
    3. Jianzhao Gao & Eshel Faraggi & Yaoqi Zhou & Jishou Ruan & Lukasz Kurgan, 2012. "BEST: Improved Prediction of B-Cell Epitopes from Antigen Sequences," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0117206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.