Author
Listed:
- Serena Monti
- Giuseppe Palma
- Monica Ragucci
- Lorenzo Mannelli
- Marcello Mancini
- Anna Prinster
Abstract
The heartbeat has been proposed as an intrinsic source of motion that can be used in combination with tagged Magnetic Resonance Imaging (MRI) to measure displacements induced in the liver as an index of liver stiffness. Optimizing a tagged MRI acquisition protocol in terms of sensitivity to these displacements, which are in the order of pixel size, is necessary to develop the method as a quantification tool for staging fibrosis. We reproduced a study of cardiac-induced strain in the liver at 3T and simulated tagged MR images with different grid tag patterns to evaluate the performance of the Harmonic Phase (HARP) image analysis method and its dependence on the parameters of tag spacing and grid angle. The Partial Volume Effect (PVE), T1 relaxation, and different levels of noise were taken into account. Four displacement fields of increasing intensity were created and applied to the tagged MR images of the liver. These fields simulated the deformation at different liver stiffnesses. An Error Index (EI) was calculated to evaluate the estimation accuracy for various parameter values. In the absence of noise, the estimation accuracy of the displacement fields increased as tag spacings decreased. EIs for each of the four displacement fields were lower at 0° and the local minima of the EI were found to correspond to multiples of pixel size. The accuracy of the estimation decreased for increasing levels of added noise; as the level increased, the improved estimation caused by decreasing the tag spacing tended to zero. The optimal tag spacing turned out to be a compromise between the smallest tag period that is a multiple of the pixel size and is achievable in a real acquisition and the tag spacing that guarantees an accurate liver displacement measure in the presence of realistic levels of noise.
Suggested Citation
Serena Monti & Giuseppe Palma & Monica Ragucci & Lorenzo Mannelli & Marcello Mancini & Anna Prinster, 2014.
"Optimization of Tagged MRI for Quantification of Liver Stiffness Using Computer Simulated Data,"
PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.
Handle:
RePEc:plo:pone00:0111852
DOI: 10.1371/journal.pone.0111852
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0111852. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.